Use the Laplace transform to solve the given initial-value probler y" + y = 8 (t – 27) + 8 (t- 47), y (0) = 1 & y (0) = OL{y (t)} = Y (s) = 1 -2nt + etit] 4nt 82+1 y (t) = cost - sin t [u (t - 2n) + u (t- 47)] | O L{y (t)} = Y (s) = -- -2nt - 82+1 y (t) = - cost - sin t [u (t - 2n) - u (t – 47)] L{y (t)} = Y (s) = +le bat + etrt] -2nt 82+1 y (t) = cost + sin t [u (t – 27)+ u (t – 47)] O L{y (t)} = Y (s) = +e nt +e] %3D 82+1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

11) Please help with following multiple choice ASAP!

Use the Laplace transform to solve the given initial-value problem.
y" + y = 8 (t – 2n)+ 8 (t – 47), y (0) = 1 & y (0) = 0
%3|
|
OL{y (t)} = Y (s) = - e-2nt + ent]
1
s2+1
s2+1
y (t)
= cos t – sin t (u (t – 27) + u (t – 47)]
O L{y (t)} = Y (s) = - - ett]
1.
-2nt
s2+1
82+1 le
y (t) = - cost – sin t [u (t – 27) – u (t – 47)]
L{y (t)} = Y (s) = +e-2t +e]
1
-2nt
4nt
s2+1
s2+1
y (t) = cost + sin t [u (t – 27) + u (t – 47)|
%3D
O L{y(t)} = Y (s) = + e +et]
1
-2nt
4nt
s2+1
s2+1
y (t) = sint + cost (u (t – 27) + u (t – 47)]
%3D
Transcribed Image Text:Use the Laplace transform to solve the given initial-value problem. y" + y = 8 (t – 2n)+ 8 (t – 47), y (0) = 1 & y (0) = 0 %3| | OL{y (t)} = Y (s) = - e-2nt + ent] 1 s2+1 s2+1 y (t) = cos t – sin t (u (t – 27) + u (t – 47)] O L{y (t)} = Y (s) = - - ett] 1. -2nt s2+1 82+1 le y (t) = - cost – sin t [u (t – 27) – u (t – 47)] L{y (t)} = Y (s) = +e-2t +e] 1 -2nt 4nt s2+1 s2+1 y (t) = cost + sin t [u (t – 27) + u (t – 47)| %3D O L{y(t)} = Y (s) = + e +et] 1 -2nt 4nt s2+1 s2+1 y (t) = sint + cost (u (t – 27) + u (t – 47)] %3D
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,