Use the Laplace transform to solve the given initial value problem. y(t) = 0 1 2 exp(1 t) + 1 1 - exp(-2t) 1 - exp(2t) exp(t + 2) - 1 1- exp(t + 2) 2 exp(t+1) + 1 1 + exp(-2t) 1 + exp(2t) 2 exp(-t-1)-2 2-2 exp(-t-1) exp(-t-1) + 1 2 exp(1-1)-2 2-2 exp(1-t) No solution y' + y = f(t), y(0) = 0, where f(t) = +( ✓ ) U(t- V 0, 0≤t<1 {2, tz1

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please box all 3 answers. Thank you.

Use the Laplace transform to solve the given initial value problem.
y(t) =
0
1
2
exp(1 t) + 1
1 - exp(-2t)
1 - exp(2t)
exp(t + 2) - 1
1 - exp(t + 2)
2 exp(t + 1) + 1
1 + exp(-2t)
1 + exp(2t)
2 exp(-t-1)-2
2-2 exp(-t-1)
exp(-t-1) + 1
2 exp(1-t) - 2
2-2 exp(1 – t)
No solution
0, 0≤t<1
y'+y=f(t), y(0) = 0, where f(t) = {2, t>1
+(
✓ ) U(t-
✓ )
Transcribed Image Text:Use the Laplace transform to solve the given initial value problem. y(t) = 0 1 2 exp(1 t) + 1 1 - exp(-2t) 1 - exp(2t) exp(t + 2) - 1 1 - exp(t + 2) 2 exp(t + 1) + 1 1 + exp(-2t) 1 + exp(2t) 2 exp(-t-1)-2 2-2 exp(-t-1) exp(-t-1) + 1 2 exp(1-t) - 2 2-2 exp(1 – t) No solution 0, 0≤t<1 y'+y=f(t), y(0) = 0, where f(t) = {2, t>1 +( ✓ ) U(t- ✓ )
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,