Use the Laplace transform to solve the given initial-value problem. y" +y = 0(t-) + (t - 피, y(0) = 0, y'(0) = 0 2 5n y(t) = ( -cos(1) CoS t 2 2 Need Help? Read It

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Hello!

Can you please explain how I should simplify this expression correctly? I am not sure what value belongs in the second box. 

Thank you for your assistance.

 

**Use the Laplace transform to solve the given initial-value problem.**

Given:

\[ y'' + y = \delta\left( t - \frac{1}{2} \pi \right) + \delta\left( t - \frac{5}{2} \pi \right), \quad y(0) = 0, \, y'(0) = 0 \]

Solution:

\[ y(t) = \left( -\cos(t) \right) u\left( t - \frac{\pi}{2} \right) + \cos\left( t - \frac{5\pi}{2} \right) u\left( t - \frac{5\pi}{2} \right) \]

There are two parts of the solution:

1. \( -\cos(t) \) multiplied by the unit step function \( u\left( t - \frac{\pi}{2} \right) \)
   - This represents a step function that shifts the cosine function starting at \( t = \frac{\pi}{2} \).

2. \( \cos\left( t - \frac{5\pi}{2} \right) \) multiplied by the unit step function \( u\left( t - \frac{5\pi}{2} \right) \)
   - This starts the cosine function at \( t = \frac{5\pi}{2} \).

**Need Help?**

If you require additional understanding or guidance on the concept, consider utilizing the assistance feature available.
Transcribed Image Text:**Use the Laplace transform to solve the given initial-value problem.** Given: \[ y'' + y = \delta\left( t - \frac{1}{2} \pi \right) + \delta\left( t - \frac{5}{2} \pi \right), \quad y(0) = 0, \, y'(0) = 0 \] Solution: \[ y(t) = \left( -\cos(t) \right) u\left( t - \frac{\pi}{2} \right) + \cos\left( t - \frac{5\pi}{2} \right) u\left( t - \frac{5\pi}{2} \right) \] There are two parts of the solution: 1. \( -\cos(t) \) multiplied by the unit step function \( u\left( t - \frac{\pi}{2} \right) \) - This represents a step function that shifts the cosine function starting at \( t = \frac{\pi}{2} \). 2. \( \cos\left( t - \frac{5\pi}{2} \right) \) multiplied by the unit step function \( u\left( t - \frac{5\pi}{2} \right) \) - This starts the cosine function at \( t = \frac{5\pi}{2} \). **Need Help?** If you require additional understanding or guidance on the concept, consider utilizing the assistance feature available.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,