Use the integration theorem to show that Cos nx 효(72-3a2) =D Σ(-1)”-1! -T

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve c and d, using the table might help

1. The Fourier series for the function f(x) = ;x, -T < x <T is
sin nx
E(-1)"
n-1
n
n=1
a) Sketch the graph of the function f, which is the pointwise sum of the
series on R.
b) Use Parseval's formula to show that En=1 72
1
c) Use the integration theorem to show that
COS nx
2(r² – 3x²) = E(-1)"-1
-T < x < T
n2
n=1
and
sin nx
ba(n² – a²) = E(-1)*-1
n3
-T < x < T
n=1
d) Discuss whether the sum of each Fourier series in c) is piecewise
continuous, continuous, piecewise C' or C on R. Sketch the graphs
of the sum functions.
Transcribed Image Text:1. The Fourier series for the function f(x) = ;x, -T < x <T is sin nx E(-1)" n-1 n n=1 a) Sketch the graph of the function f, which is the pointwise sum of the series on R. b) Use Parseval's formula to show that En=1 72 1 c) Use the integration theorem to show that COS nx 2(r² – 3x²) = E(-1)"-1 -T < x < T n2 n=1 and sin nx ba(n² – a²) = E(-1)*-1 n3 -T < x < T n=1 d) Discuss whether the sum of each Fourier series in c) is piecewise continuous, continuous, piecewise C' or C on R. Sketch the graphs of the sum functions.
Table 5.1: Examples of Fourier series
f(x)
zao +2(am cos nx + b, sin nx)
n=1
i)
x, 0<x < T
(-1)n+1 sin nx
n
n=1
sin nx
ii)
(T – x), 0< x < T
n=1
sin(2n – 1)x
2n – 1
ii)
7, 0< x < T
n=1
Σ
(-1)ª-1 Cos(2n – 1)x
2n – 1
iv)
T, n < x < T
uf > * > 0
n=1
COS nx
v)
(7? – 32), 0 < x < +
E(-1)"-1.
n2
n=1
COs nx
vi) (T – 2)? – RT², 0 < x < T
n2
23D1
cos (2n – 1)x
(2n – 1)2
vii) 7(T – 2), 0< x < ™
n=1
(-1)n-1 Sin(2n – 1)x
(2n – 1)2
0 < x < }T
TI,
liT(T – x), T < x < T
viii)
n=1
Transcribed Image Text:Table 5.1: Examples of Fourier series f(x) zao +2(am cos nx + b, sin nx) n=1 i) x, 0<x < T (-1)n+1 sin nx n n=1 sin nx ii) (T – x), 0< x < T n=1 sin(2n – 1)x 2n – 1 ii) 7, 0< x < T n=1 Σ (-1)ª-1 Cos(2n – 1)x 2n – 1 iv) T, n < x < T uf > * > 0 n=1 COS nx v) (7? – 32), 0 < x < + E(-1)"-1. n2 n=1 COs nx vi) (T – 2)? – RT², 0 < x < T n2 23D1 cos (2n – 1)x (2n – 1)2 vii) 7(T – 2), 0< x < ™ n=1 (-1)n-1 Sin(2n – 1)x (2n – 1)2 0 < x < }T TI, liT(T – x), T < x < T viii) n=1
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,