Use the information in the table to find h'(a) at the given value of a. h(x) = (- 2 f(x) ;a = 3 g(x) f(x) f'(x) g(x) g'(x) 7 1 9 -2 3 2 8 8 1 -1 3 -5 2 h'(a) = 2.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%
To find \( h'(a) \) at the given value of \( a = 3 \), we use the function definition:
\[ h(x) = \left( \frac{f(x)}{g(x)} \right)^2 \]

We need to apply the chain rule and quotient rule to differentiate \( h(x) \).

**Table Information:**

The table provides values for functions and their derivatives at specific \( x \)-values:

\[
\begin{array}{|c|c|c|c|c|}
\hline
x & f(x) & f'(x) & g(x) & g'(x) \\
\hline
0 & 7 & 5 & 0 & 2 \\
1 & 9 & -2 & 3 & 0 \\
2 & 8 & 8 & 1 & -1 \\
3 & 5 & -5 & 2 & 5 \\
\hline
\end{array}
\]

**Steps to find \( h'(3) \):**

1. **Find \( h(x) \):**
   \[ h(x) = \left( \frac{f(x)}{g(x)} \right)^2 \]

2. **Derivative using the chain rule and quotient rule:**
   \[
   h'(x) = 2 \left( \frac{f(x)}{g(x)} \right) \cdot \left( \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \right)
   \]

3. **Substitute \( x = 3 \) using table values:**
   - \( f(3) = 5 \)
   - \( f'(3) = -5 \)
   - \( g(3) = 2 \)
   - \( g'(3) = 5 \)

4. **Compute \( \frac{f(3)}{g(3)} \) and its derivative:**
   \[
   \frac{f(3)}{g(3)} = \frac{5}{2}
   \]

   \[
   \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))^2} = \frac{2(-5) - 5(5)}{
Transcribed Image Text:To find \( h'(a) \) at the given value of \( a = 3 \), we use the function definition: \[ h(x) = \left( \frac{f(x)}{g(x)} \right)^2 \] We need to apply the chain rule and quotient rule to differentiate \( h(x) \). **Table Information:** The table provides values for functions and their derivatives at specific \( x \)-values: \[ \begin{array}{|c|c|c|c|c|} \hline x & f(x) & f'(x) & g(x) & g'(x) \\ \hline 0 & 7 & 5 & 0 & 2 \\ 1 & 9 & -2 & 3 & 0 \\ 2 & 8 & 8 & 1 & -1 \\ 3 & 5 & -5 & 2 & 5 \\ \hline \end{array} \] **Steps to find \( h'(3) \):** 1. **Find \( h(x) \):** \[ h(x) = \left( \frac{f(x)}{g(x)} \right)^2 \] 2. **Derivative using the chain rule and quotient rule:** \[ h'(x) = 2 \left( \frac{f(x)}{g(x)} \right) \cdot \left( \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \right) \] 3. **Substitute \( x = 3 \) using table values:** - \( f(3) = 5 \) - \( f'(3) = -5 \) - \( g(3) = 2 \) - \( g'(3) = 5 \) 4. **Compute \( \frac{f(3)}{g(3)} \) and its derivative:** \[ \frac{f(3)}{g(3)} = \frac{5}{2} \] \[ \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))^2} = \frac{2(-5) - 5(5)}{
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning