Use the Gram-Schmidt process to find a orthogonal basis for Row (A) where 3 0 3 00 0-2 -2 0 0 -4 -4 0 1 -4 -1 0 1 0 1 0 0 A = 0 0 3 1
Use the Gram-Schmidt process to find a orthogonal basis for Row (A) where 3 0 3 00 0-2 -2 0 0 -4 -4 0 1 -4 -1 0 1 0 1 0 0 A = 0 0 3 1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Using the Gram-Schmidt Process to Find an Orthogonal Basis for Row(A)**
In this section, we will perform the Gram-Schmidt process to find an orthogonal basis for the row space of the matrix \( A \). The given matrix \( A \) is:
\[
A =
\begin{bmatrix}
3 & 0 & 3 & 0 & 0 \\
0 & -2 & -2 & 0 & 0 \\
0 & -4 & -4 & 0 & 1 \\
3 & -4 & -1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0
\end{bmatrix}
\]
The row space of a matrix is the set of all linear combinations of its row vectors. To find an orthogonal basis for the row space using the Gram-Schmidt process, we proceed as follows:
1. **Step 1: Select the first vector \(\mathbf{v_1}\)**:
- Let \(\mathbf{v_1}\) be the first row of matrix \( A \).
\[
\mathbf{v_1} = \begin{bmatrix} 3 & 0 & 3 & 0 & 0 \end{bmatrix}
\]
2. **Step 2: Orthogonalize the second row vector \(\mathbf{v_2}\)**:
- Compute the projection of the second row vector \(\mathbf{a_2}\) onto \(\mathbf{v_1}\).
\[
\mathbf{a_2} = \begin{bmatrix} 0 & -2 & -2 & 0 & 0 \end{bmatrix}
\]
- Find \(\mathbf{u_2} = \mathbf{a_2} - \operatorname{proj}_{\mathbf{v_1}} \mathbf{a_2}\).
3. **Step 3: Continue orthogonalizing each subsequent row vector**:
- Apply the Gram-Schmidt process recursively to each row vector to ensure orthogonality with all previously processed vectors:
\[
\mathbf{u_3} = \mathbf{a_3} - \operatorname{proj}_{\mathbf{v_1}} \mathbf{a_3} - \operatorname{proj}_{\mathbf{u_](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F644afe59-5ebd-4464-95f6-cbe6de6ea324%2F10c72101-2918-459c-9a82-8e33256ac9ad%2Fexz2si_processed.png&w=3840&q=75)
Transcribed Image Text:**Using the Gram-Schmidt Process to Find an Orthogonal Basis for Row(A)**
In this section, we will perform the Gram-Schmidt process to find an orthogonal basis for the row space of the matrix \( A \). The given matrix \( A \) is:
\[
A =
\begin{bmatrix}
3 & 0 & 3 & 0 & 0 \\
0 & -2 & -2 & 0 & 0 \\
0 & -4 & -4 & 0 & 1 \\
3 & -4 & -1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0
\end{bmatrix}
\]
The row space of a matrix is the set of all linear combinations of its row vectors. To find an orthogonal basis for the row space using the Gram-Schmidt process, we proceed as follows:
1. **Step 1: Select the first vector \(\mathbf{v_1}\)**:
- Let \(\mathbf{v_1}\) be the first row of matrix \( A \).
\[
\mathbf{v_1} = \begin{bmatrix} 3 & 0 & 3 & 0 & 0 \end{bmatrix}
\]
2. **Step 2: Orthogonalize the second row vector \(\mathbf{v_2}\)**:
- Compute the projection of the second row vector \(\mathbf{a_2}\) onto \(\mathbf{v_1}\).
\[
\mathbf{a_2} = \begin{bmatrix} 0 & -2 & -2 & 0 & 0 \end{bmatrix}
\]
- Find \(\mathbf{u_2} = \mathbf{a_2} - \operatorname{proj}_{\mathbf{v_1}} \mathbf{a_2}\).
3. **Step 3: Continue orthogonalizing each subsequent row vector**:
- Apply the Gram-Schmidt process recursively to each row vector to ensure orthogonality with all previously processed vectors:
\[
\mathbf{u_3} = \mathbf{a_3} - \operatorname{proj}_{\mathbf{v_1}} \mathbf{a_3} - \operatorname{proj}_{\mathbf{u_
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)