Use the functions f(x) = x − 3 and g(x) = x³ to find the value or function. (g-¹ of ¹)(-3) (g-¹ of ¹)(-3) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Using Composite and Inverse Functions**

In this example, we will use the given functions \( f(x) = \frac{1}{8}x - 3 \) and \( g(x) = x^3 \) to find the value of \( (g^{-1} \circ f^{-1})(-3) \).

1. Find the inverse of \( f(x) \):
   \[
   f(x) = \frac{1}{8}x - 3
   \]
   Start by letting \( y = f(x) \):
   \[
   y = \frac{1}{8}x - 3
   \]
   Solve for \( x \):
   \[
   y + 3 = \frac{1}{8}x
   \]
   \[
   8(y + 3) = x
   \]
   Therefore, the inverse function is:
   \[
   f^{-1}(x) = 8(x + 3)
   \]

2. Apply the inverse function \( f^{-1}(x) \) to -3:
   \[
   f^{-1}(-3) = 8(-3 + 3)
   \]
   \[
   f^{-1}(-3) = 8 \cdot 0 = 0
   \]

3. Now find the inverse of \( g(x) \):
   \[
   g(x) = x^3
   \]
   Let \( y = g(x) \):
   \[
   y = x^3
   \]
   Solve for \( x \):
   \[
   x = \sqrt[3]{y}
   \]
   Therefore, the inverse function is:
   \[
   g^{-1}(x) = \sqrt[3]{x}
   \]

4. Apply the inverse function \( g^{-1}(x) \) to the result of \( f^{-1}(-3) \):
   \[
   g^{-1}(f^{-1}(-3)) = g^{-1}(0)
   \]
   \[
   g^{-1}(0) = \sqrt[3]{0} = 0
   \]

Therefore, the value of \( (g^{-1} \circ f^{-1})(-3) \) is:
\[
(g^{-1} \circ f^{-1})(-3)
Transcribed Image Text:**Using Composite and Inverse Functions** In this example, we will use the given functions \( f(x) = \frac{1}{8}x - 3 \) and \( g(x) = x^3 \) to find the value of \( (g^{-1} \circ f^{-1})(-3) \). 1. Find the inverse of \( f(x) \): \[ f(x) = \frac{1}{8}x - 3 \] Start by letting \( y = f(x) \): \[ y = \frac{1}{8}x - 3 \] Solve for \( x \): \[ y + 3 = \frac{1}{8}x \] \[ 8(y + 3) = x \] Therefore, the inverse function is: \[ f^{-1}(x) = 8(x + 3) \] 2. Apply the inverse function \( f^{-1}(x) \) to -3: \[ f^{-1}(-3) = 8(-3 + 3) \] \[ f^{-1}(-3) = 8 \cdot 0 = 0 \] 3. Now find the inverse of \( g(x) \): \[ g(x) = x^3 \] Let \( y = g(x) \): \[ y = x^3 \] Solve for \( x \): \[ x = \sqrt[3]{y} \] Therefore, the inverse function is: \[ g^{-1}(x) = \sqrt[3]{x} \] 4. Apply the inverse function \( g^{-1}(x) \) to the result of \( f^{-1}(-3) \): \[ g^{-1}(f^{-1}(-3)) = g^{-1}(0) \] \[ g^{-1}(0) = \sqrt[3]{0} = 0 \] Therefore, the value of \( (g^{-1} \circ f^{-1})(-3) \) is: \[ (g^{-1} \circ f^{-1})(-3)
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,