Use the following information to answer Q10-Q11. The researcher estinmated a nonlinear regression by adding the variable STORIES^2 (i.e., STORIES²). log (selling price) = bo + b̟ log (SFLA) + b,BEDS + b,BATHS + b,STORIES + b;STORIES + B6VACANT + b,Age +e Dependent Variable: LOG(SELLING PRICE) Method Least Squares Date: 08/03/21 Time: 16:58 Sample: 1 6660 IF YEAR=2001 Included observations: 1746 Variable Coefficient Std. Error t-Statistic Prob. C LOG(SFLA) BEDS BATHS STORIES STORIES 2 VACANT AGE 5.898568 0.925893 -0.069610 0.033590 -0.471502 0.149252 -0.037820 -0.004177 28.29477 34.60462 -7.313708 2.178491 -2.585392 2.504330 -3.356101 -15.78847 0.0000 0.0000 0.0000 0.0295 0.0098 0.0124 0.0008 0.0000 0.208468 0.026756 0.009518 0.015419 0.182371 0.059597 0.011269 0.000265 R-squared Adjusted R-squared S.É of regression Sum squared resid Loglikelihood F-statistic Prob(F-statistic) 0.709350 0.708179 0.201018 70.22965 327.7548 605.9567 0.000000 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 12.01860 0.372115 -0.366271 -0.34 1231 -0.357014 1.329441 Q10. Between equations (3) and (4), which model better fits the data? Explain. Q11. What is the number of stories associated with the minimum log(selling_price)? Give your answer up to the first decimal place +

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
Computer science
Use the following information to answer Q10-Q11.
The researcher estimated a nonlinear regression by adding the variable STORIES^2 (i.e.,
STORIES*).
log (selling price) = b, + b, log (SFLA) + b,BEDS + B3BATHS + b,STORIES +
B5STORIES² + b,VACANT + b,Age + e
Dependent Variable: LOG(SELLING PRICE)
Method Least Squares
Date: 08/03/21 Time: 16:58
Sample: 1 6660 IF YEAR=2001
Included observations: 1746
Variable
Coefficient
Std Error
t-Statistic
Prob.
C
0.208468
0.026756
LOG(SFLA)
BEDS
BATHS
STORIES
STORIES^2
VACANT
AGE
5.898568
0.925893
-0.069610
0.033590
-0.471502
0.149252
-0.037820
-0.004177
0.009518
0.015419
0.182371
0.059597
0.011269
0.000265
28.29477
34.60462
-7.313708
2.178491
-2.585392
2.504330
-3.356101
-15.78847
0.0000
0.0000
0.0000
0.0295
0.0098
0.0124
0.0008
0.0000
R-squared
Adjusted R-squared
S.É of regression
Sum squared resid
Loglikelihood
F-statistic
Prob(F-statistic)
0.709350
0.708179
0.201018
70.22965
327.7548
605.9567
0.000000
Mean dependent var
S.D. dependent var
Akaike info criterion
Schwarz criterion
Hannan-Quinn criter.
Durbin-Watson stat
12.01860
0.372115
-0.366271
-0.34 1231
-0.357014
1.329441
Q10. Between equations (3) and (4), which model better fits the data? Explain.
Q11. What is the number of stories associated with the minimum log(selling price)? Give
your answer up to the first decimal place
Transcribed Image Text:Use the following information to answer Q10-Q11. The researcher estimated a nonlinear regression by adding the variable STORIES^2 (i.e., STORIES*). log (selling price) = b, + b, log (SFLA) + b,BEDS + B3BATHS + b,STORIES + B5STORIES² + b,VACANT + b,Age + e Dependent Variable: LOG(SELLING PRICE) Method Least Squares Date: 08/03/21 Time: 16:58 Sample: 1 6660 IF YEAR=2001 Included observations: 1746 Variable Coefficient Std Error t-Statistic Prob. C 0.208468 0.026756 LOG(SFLA) BEDS BATHS STORIES STORIES^2 VACANT AGE 5.898568 0.925893 -0.069610 0.033590 -0.471502 0.149252 -0.037820 -0.004177 0.009518 0.015419 0.182371 0.059597 0.011269 0.000265 28.29477 34.60462 -7.313708 2.178491 -2.585392 2.504330 -3.356101 -15.78847 0.0000 0.0000 0.0000 0.0295 0.0098 0.0124 0.0008 0.0000 R-squared Adjusted R-squared S.É of regression Sum squared resid Loglikelihood F-statistic Prob(F-statistic) 0.709350 0.708179 0.201018 70.22965 327.7548 605.9567 0.000000 Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat 12.01860 0.372115 -0.366271 -0.34 1231 -0.357014 1.329441 Q10. Between equations (3) and (4), which model better fits the data? Explain. Q11. What is the number of stories associated with the minimum log(selling price)? Give your answer up to the first decimal place
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Temporal Difference Learning
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education