Use the finite cosine transform of the fourth derivativ 11 T n²² Fa{f(x)} -[f'(0) - (- p³ p² - f" (0) + (-1)""(p), -F(n) + Fin

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve

to show that a solution of the boundary-value problem
17. Use the finite cosine transformm of the fourth derivative f"(x),
Fa"(x)} =
n
%3D
F(n) +
P
U'(0) - (-1)"f'(p)]
p2
- "(0) + (-1)"" (p),
atu
u=0, 0<x < T, 0<I< 2, uo conslan
a'u
ax
ar
du
= 0,
axlx=7
du
= 0, 0<1<2
%3D
%3D
0-xe
3D0,
= 0,
= 0, 0<1< 2
%3D
arl
u(x, 0) = 0, u(x, 2) = 0, 0<x < T
%3D
du
au
= Uo, 0<x< T
%3D
at =0
at=2
%D2
%3D
is u(x, t) = } udt³ – 21?).
Transcribed Image Text:to show that a solution of the boundary-value problem 17. Use the finite cosine transformm of the fourth derivative f"(x), Fa"(x)} = n %3D F(n) + P U'(0) - (-1)"f'(p)] p2 - "(0) + (-1)"" (p), atu u=0, 0<x < T, 0<I< 2, uo conslan a'u ax ar du = 0, axlx=7 du = 0, 0<1<2 %3D %3D 0-xe 3D0, = 0, = 0, 0<1< 2 %3D arl u(x, 0) = 0, u(x, 2) = 0, 0<x < T %3D du au = Uo, 0<x< T %3D at =0 at=2 %D2 %3D is u(x, t) = } udt³ – 21?).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,