Use the Factor Theorem to determine whether x -c is a factor of f(x). x-10 f(x)=x4-21x2-100; A) Yes f(x)=7x4+20x3-3x²+x-3; x+3 A) Yes B) No B) No

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Using the Factor Theorem to Determine Factors**

This exercise utilizes the Factor Theorem to ascertain if \(x - c\) is a factor of \(f(x)\).

1. **Problem 1:**
   - Given: \( f(x) = x^4 - 21x^2 - 100 \); \( x - 10 \)
   - Options:  
     - A) Yes  
     - B) No  

2. **Problem 2:**
   - Given: \( f(x) = 7x^4 + 20x^3 - 3x^2 + x - 3 \); \( x + 3 \)
   - Options:  
     - A) Yes  
     - B) No  

In this exercise, to determine if \(x - c\) is a factor of \(f(x)\), substitute \(c\) into the polynomial \(f(x)\). If the result is zero, then \(x - c\) is a factor.
Transcribed Image Text:**Using the Factor Theorem to Determine Factors** This exercise utilizes the Factor Theorem to ascertain if \(x - c\) is a factor of \(f(x)\). 1. **Problem 1:** - Given: \( f(x) = x^4 - 21x^2 - 100 \); \( x - 10 \) - Options: - A) Yes - B) No 2. **Problem 2:** - Given: \( f(x) = 7x^4 + 20x^3 - 3x^2 + x - 3 \); \( x + 3 \) - Options: - A) Yes - B) No In this exercise, to determine if \(x - c\) is a factor of \(f(x)\), substitute \(c\) into the polynomial \(f(x)\). If the result is zero, then \(x - c\) is a factor.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,