Use the double-angle formula for cosine to compute cos(20) given cos( os(0) = where 0 <0<. 79 90

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
icon
Related questions
Question
**Application of the Double-Angle Formula for Cosine**

To compute \(\cos(2\theta)\) when given \(\cos(\theta) = \frac{79}{90}\) and the range \(0 < \theta < \frac{\pi}{2}\), we use the double-angle formula for cosine. 

The double-angle formula for cosine states:
\[ \cos(2\theta) = 2\cos^2(\theta) - 1 \]

Given \(\cos(\theta) = \frac{79}{90}\), we substitute this value into the formula:

1. First, find \(\cos^2(\theta)\):
\[ \cos^2(\theta) = \left(\frac{79}{90}\right)^2 \]

2. Compute the value:
\[ \cos^2(\theta) = \frac{6241}{8100} \]

3. Now, apply the double-angle formula:
\[ \cos(2\theta) = 2\left(\frac{6241}{8100}\right) - 1 \]
\[ \cos(2\theta) = \frac{12482}{8100} - 1 \]
\[ \cos(2\theta) = \frac{12482}{8100} - \frac{8100}{8100} \]
\[ \cos(2\theta) = \frac{12482 - 8100}{8100} \]
\[ \cos(2\theta) = \frac{4382}{8100} \]

Simplify the fraction, if possible:
\[ \cos(2\theta) = \frac{2191}{4050} \]

Thus, the value of \(\cos(2\theta)\) is \(\frac{2191}{4050}\).
Transcribed Image Text:**Application of the Double-Angle Formula for Cosine** To compute \(\cos(2\theta)\) when given \(\cos(\theta) = \frac{79}{90}\) and the range \(0 < \theta < \frac{\pi}{2}\), we use the double-angle formula for cosine. The double-angle formula for cosine states: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Given \(\cos(\theta) = \frac{79}{90}\), we substitute this value into the formula: 1. First, find \(\cos^2(\theta)\): \[ \cos^2(\theta) = \left(\frac{79}{90}\right)^2 \] 2. Compute the value: \[ \cos^2(\theta) = \frac{6241}{8100} \] 3. Now, apply the double-angle formula: \[ \cos(2\theta) = 2\left(\frac{6241}{8100}\right) - 1 \] \[ \cos(2\theta) = \frac{12482}{8100} - 1 \] \[ \cos(2\theta) = \frac{12482}{8100} - \frac{8100}{8100} \] \[ \cos(2\theta) = \frac{12482 - 8100}{8100} \] \[ \cos(2\theta) = \frac{4382}{8100} \] Simplify the fraction, if possible: \[ \cos(2\theta) = \frac{2191}{4050} \] Thus, the value of \(\cos(2\theta)\) is \(\frac{2191}{4050}\).
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning