Use the data in the supporting materials to calculate the equilibrium constant (Kp) for the following reaction at 25°c. 2 SO2(g) + O2(9)=2 S03(g) Kp = 4.24e24 Calculate Kp for the reaction at 49°C using the following equations. (a) the van't Hoff equation below. a In (*),- RT2 Kp = 1.138e22 (b) the Gibbs-Helmholtz equations below to find A,G° at 49°C and hence, Kp at the same temperature. AG ΔΗ (i) A,G2_ A,G1 (ii) - A,H(-) T2 T1 Кр = 1.138e22 (c) A,G° = A,H° = TA,S° to find A,G° at 49°C and hence, Kp at the same temperature. %3D Kp = 1.7742e22

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
100%
Standard State Thermodynamic Data
formula
AH? (kJ/mol)
s° (J/mol·K)
AG° (kJ/mol)
formula
AHº (kJ/mol)
s° J/mol·K)
AG° (kJ/mol)
SF,(g)
SO(g)
SOCI,(g)
SO2(g)
Ni(g)
429.7
182.2
375.4
-1209
291.8
-1105.3
Ni(s)
29.9
-8.9
6.3
222.0
-59.9
NiCl2(s)
-305.3
97.7
-334.4
-212.5
309.8
-304.9
O(g)
02(g)
03(g)
249.4
161.0
231.7
-296.1
248.5
-300.1
So,Cl>(g)
SO3(g)
Se(g)
205.0
-364.0
311.9
-457.0
142.7
237.7
163.4
-395.2
256.2
-370.4
P(g)
316.5
163.2
267.8
227.1
176.7
174.4
P(red)
-18.4
29.3
12.1
Se(s)
42.4
-12.6
Si(g)
Si(s)
SiBr4(1)
SiC(s)
SİCI4(g)
SiCl,(1)
P(s)
P(white)
PBr3(g)
41.1
-12.3
450.0
168.0
399.9
41.1
18.83
-139.3
348.1
-243.1
-457.3
277.8
-540.1
PBr3(1)
PCI3(g)
PCI3(1)
-184.5
240.2
-256.1
-65.3
16.6
-70.2
-287.0
311.78
-267.8
-657.0
330.7
-755.6
-319.7
217.1
-384.4
-687.0
239.7
-758.5
PCI5(g)
-374.9
364.6
-305.0
SiO2(s)
-910.9
41.84
-856.6
PH3(g)
РОС:(g)
5.4
210.2
13.5
Sn(g)
301.2
168.5
251.0
Sn(s)
SNC14(1)
Ti(g)
-558.5
325.5
-655.5
51.2
-15.3
POC13(1)
-597.1
222.5
-663.4
-511.3
258.6
-588.4
PĄ(g)
58.9
280.0
-24.6
473.0
180.3
419.2
P,010(s)
-2984.0
228.86
-2697.0
Ti(s)
TiCl>(s)
TiCl;(s)
TiClą(g)
30.7
-9.2
Pb(g)
195.2
175.4
142.9
-513.8
87.4
-539.9
Pb(s)
PbBr,(s)
64.8
-19.3
-720.9
139.7
-762.6
-278.7
161.5
-326.9
-763.2
353.2
-868.5
TiClą(1)
TiO2(s)
252.3
PBCO3(s)
PbCl2(s)
-699.1
131.0
-738.2
-804.2
-879.4
-359.4
136.0
-399.9
-944.0
50.6
-959.1
PbO(s)
Rb(g)
Xe(g)
Zn(g)
-217.3
68.7
-237.8
169.6
80.9
170.1
30.2
130.4
161.0
82.4
Rb(s)
Zn(s)
ZnBr2(s)
ZNCO3(s)
76.8
-22.9
41.63
RbBr(s)
-394.6
110.0
-427.4
-328.7
138.5
-370.0
RbCl(s)
-435.4
95.9
-464.0
-812.8
82.4
-837.4
167.8
ZnCl,(s)
ZnO(s)
S(g)
277.2
227.2
-415.1
111.5
-448.3
S(monoclinic)
S(rhombic)
S(s)
0.30
32.55
0.10
-348.3
43.64
-318.3
31.88
ZnS(s)
-202.9
57.74
-198.3
32.1
-9.6
ZnSOĄ(s)
-978.6
124.9
-871.6
Transcribed Image Text:Standard State Thermodynamic Data formula AH? (kJ/mol) s° (J/mol·K) AG° (kJ/mol) formula AHº (kJ/mol) s° J/mol·K) AG° (kJ/mol) SF,(g) SO(g) SOCI,(g) SO2(g) Ni(g) 429.7 182.2 375.4 -1209 291.8 -1105.3 Ni(s) 29.9 -8.9 6.3 222.0 -59.9 NiCl2(s) -305.3 97.7 -334.4 -212.5 309.8 -304.9 O(g) 02(g) 03(g) 249.4 161.0 231.7 -296.1 248.5 -300.1 So,Cl>(g) SO3(g) Se(g) 205.0 -364.0 311.9 -457.0 142.7 237.7 163.4 -395.2 256.2 -370.4 P(g) 316.5 163.2 267.8 227.1 176.7 174.4 P(red) -18.4 29.3 12.1 Se(s) 42.4 -12.6 Si(g) Si(s) SiBr4(1) SiC(s) SİCI4(g) SiCl,(1) P(s) P(white) PBr3(g) 41.1 -12.3 450.0 168.0 399.9 41.1 18.83 -139.3 348.1 -243.1 -457.3 277.8 -540.1 PBr3(1) PCI3(g) PCI3(1) -184.5 240.2 -256.1 -65.3 16.6 -70.2 -287.0 311.78 -267.8 -657.0 330.7 -755.6 -319.7 217.1 -384.4 -687.0 239.7 -758.5 PCI5(g) -374.9 364.6 -305.0 SiO2(s) -910.9 41.84 -856.6 PH3(g) РОС:(g) 5.4 210.2 13.5 Sn(g) 301.2 168.5 251.0 Sn(s) SNC14(1) Ti(g) -558.5 325.5 -655.5 51.2 -15.3 POC13(1) -597.1 222.5 -663.4 -511.3 258.6 -588.4 PĄ(g) 58.9 280.0 -24.6 473.0 180.3 419.2 P,010(s) -2984.0 228.86 -2697.0 Ti(s) TiCl>(s) TiCl;(s) TiClą(g) 30.7 -9.2 Pb(g) 195.2 175.4 142.9 -513.8 87.4 -539.9 Pb(s) PbBr,(s) 64.8 -19.3 -720.9 139.7 -762.6 -278.7 161.5 -326.9 -763.2 353.2 -868.5 TiClą(1) TiO2(s) 252.3 PBCO3(s) PbCl2(s) -699.1 131.0 -738.2 -804.2 -879.4 -359.4 136.0 -399.9 -944.0 50.6 -959.1 PbO(s) Rb(g) Xe(g) Zn(g) -217.3 68.7 -237.8 169.6 80.9 170.1 30.2 130.4 161.0 82.4 Rb(s) Zn(s) ZnBr2(s) ZNCO3(s) 76.8 -22.9 41.63 RbBr(s) -394.6 110.0 -427.4 -328.7 138.5 -370.0 RbCl(s) -435.4 95.9 -464.0 -812.8 82.4 -837.4 167.8 ZnCl,(s) ZnO(s) S(g) 277.2 227.2 -415.1 111.5 -448.3 S(monoclinic) S(rhombic) S(s) 0.30 32.55 0.10 -348.3 43.64 -318.3 31.88 ZnS(s) -202.9 57.74 -198.3 32.1 -9.6 ZnSOĄ(s) -978.6 124.9 -871.6
Use the data in the supporting materials to calculate the equilibrium constant (Kp) for the following reaction at 25°C.
2 SO2(g) + O2(g) =2 S03(g)
Кра
4.24e24
Calculate Kp for the reaction at 49°C using the following equations.
(a) the van't Hoff equation below.
(P),
A,H°
RT?
a In K
Кр
= 1.138e22
(b) the Gibbs-Helmholtz equations below to find A-G° at 49°C and hence, Kp at the same temperature.
AG
ΔΗ
(i)
= -
T2
A-G2
A;G1
1
(ii)
T2
T1
T1
Kp
= 1.138e22
(c) A-G° = ArH° – TA¡S° to find A-G° at 49°C and hence, Kp at the same temperature.
Кр 3D 1.7742е22
State the approximations employed in each case.
The assumption that A,H° is temperature independent and equal to the value calculated at 298.15 K is required by all three parts
A second assumption that AS° is
temperature independent and equal to the value calculated at 298.15 K is required by part (c)
Compare your results.
The answers calculated in parts (a) and (b) ▼
in part (c)
are very close as expected because the formulas used to calculate them are related. On the other hand, the answer calculated
may differ from the actual value due to the additional assumption involved.
Transcribed Image Text:Use the data in the supporting materials to calculate the equilibrium constant (Kp) for the following reaction at 25°C. 2 SO2(g) + O2(g) =2 S03(g) Кра 4.24e24 Calculate Kp for the reaction at 49°C using the following equations. (a) the van't Hoff equation below. (P), A,H° RT? a In K Кр = 1.138e22 (b) the Gibbs-Helmholtz equations below to find A-G° at 49°C and hence, Kp at the same temperature. AG ΔΗ (i) = - T2 A-G2 A;G1 1 (ii) T2 T1 T1 Kp = 1.138e22 (c) A-G° = ArH° – TA¡S° to find A-G° at 49°C and hence, Kp at the same temperature. Кр 3D 1.7742е22 State the approximations employed in each case. The assumption that A,H° is temperature independent and equal to the value calculated at 298.15 K is required by all three parts A second assumption that AS° is temperature independent and equal to the value calculated at 298.15 K is required by part (c) Compare your results. The answers calculated in parts (a) and (b) ▼ in part (c) are very close as expected because the formulas used to calculate them are related. On the other hand, the answer calculated may differ from the actual value due to the additional assumption involved.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 6 images

Blurred answer
Knowledge Booster
Chemical Equilibrium
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY