Use the commutator results, [ŵ, ô] = iħ, [x²,p] = 2iħâ, and [ÂÂ, Ĉ] = Â[B, Ĉ] + [‚Ĉ]Â, to find the commutators given below. (a) [x, p²] (b) [x³,p] (c) [x², p²]

icon
Related questions
Question
Use the commutator results, [â, ô] = iħ, [x²,p] = 2iħâ, and [ÂÂ, Ĉ] = Â[Â, Ĉ] + [‚ Ĉ]B,
to find the commutators given below.
(a) [x, p²]
(b) [x³, p]
(c) [x², p²]
Transcribed Image Text:Use the commutator results, [â, ô] = iħ, [x²,p] = 2iħâ, and [ÂÂ, Ĉ] = Â[Â, Ĉ] + [‚ Ĉ]B, to find the commutators given below. (a) [x, p²] (b) [x³, p] (c) [x², p²]
Expert Solution
Step 1: Step 1

G i v e n comma

open square brackets x with hat on top comma space p with hat on top close square brackets space equals space i ħ

open square brackets x with hat on top squared comma space p with hat on top close square brackets space equals 2 space i ħ x with hat on top

G e n e r a l space f o r m u l a colon

open square brackets A with hat on top comma space B with hat on top to the power of n close square brackets space equals n B with hat on top to the power of n minus 1 end exponent open square brackets A with hat on top comma space B with hat on top close square brackets

open square brackets A with hat on top to the power of n comma space B with hat on top close square brackets space equals n A with hat on top to the power of n minus 1 end exponent open square brackets A with hat on top comma space B with hat on top close square brackets

left parenthesis a right parenthesis
open square brackets space x with hat on top comma space p with hat on top squared close square brackets space equals space 2 space p with hat on top to the power of left parenthesis 2 minus 1 right parenthesis end exponent open square brackets x with hat on top comma space p with hat on top close square brackets space equals 2 space p with hat on top open square brackets x with hat on top comma space p with hat on top close square brackets space

box enclose 2 space p with hat on top open square brackets x with hat on top comma space p with hat on top close square brackets equals 2 space p with hat on top space i ħ end enclose

left parenthesis b right parenthesis space open square brackets x with hat on top cubed comma space p with hat on top close square brackets space equals space 3 space x with hat on top to the power of left parenthesis 3 minus 1 right parenthesis end exponent open square brackets x with hat on top comma space p with hat on top close square brackets space equals 3 space x with hat on top squared space i ħ

box enclose open square brackets x with hat on top cubed comma space p with hat on top close square brackets equals 3 space x with hat on top squared space i ħ end enclose

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer