Use the chain rule to find the derivative of 5x4+ 3x6 5e

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
To solve this problem, follow these steps:

We need to find the derivative of the function:

\[ 5e^{5x^4 + 3x^6} \]

using the chain rule. 

The chain rule states that the derivative of a composed function \( h(x) = f(g(x)) \) is given by:

\[ h'(x) = f'(g(x)) \cdot g'(x) \]

In this case:

- The outer function \( f(g) = 5e^g \)
- The inner function \( g(x) = 5x^4 + 3x^6 \)

### Steps:

1. Differentiate the outer function while keeping the inner function intact:
   
   - The derivative of \( 5e^g \) with respect to \( g \) is \( 5e^g \)

2. Differentiate the inner function \( g(x) = 5x^4 + 3x^6 \):

   \[ g'(x) = 20x^3 + 18x^5 \]

3. Multiply the results from steps 1 and 2:

   \[ \text{The derivative} = 5e^{5x^4 + 3x^6} \cdot (20x^3 + 18x^5) \]

4. Simplify:

   \[ = 5e^{5x^4 + 3x^6} \cdot 20x^3 + 5e^{5x^4 + 3x^6} \cdot 18x^5 \]

   \[ = 100x^3 e^{5x^4 + 3x^6} + 90x^5 e^{5x^4 + 3x^6} \]

Thus, the derivative of \( 5e^{5x^4 + 3x^6} \) is \( 100x^3 e^{5x^4 + 3x^6} + 90x^5 e^{5x^4 + 3x^6} \).
Transcribed Image Text:To solve this problem, follow these steps: We need to find the derivative of the function: \[ 5e^{5x^4 + 3x^6} \] using the chain rule. The chain rule states that the derivative of a composed function \( h(x) = f(g(x)) \) is given by: \[ h'(x) = f'(g(x)) \cdot g'(x) \] In this case: - The outer function \( f(g) = 5e^g \) - The inner function \( g(x) = 5x^4 + 3x^6 \) ### Steps: 1. Differentiate the outer function while keeping the inner function intact: - The derivative of \( 5e^g \) with respect to \( g \) is \( 5e^g \) 2. Differentiate the inner function \( g(x) = 5x^4 + 3x^6 \): \[ g'(x) = 20x^3 + 18x^5 \] 3. Multiply the results from steps 1 and 2: \[ \text{The derivative} = 5e^{5x^4 + 3x^6} \cdot (20x^3 + 18x^5) \] 4. Simplify: \[ = 5e^{5x^4 + 3x^6} \cdot 20x^3 + 5e^{5x^4 + 3x^6} \cdot 18x^5 \] \[ = 100x^3 e^{5x^4 + 3x^6} + 90x^5 e^{5x^4 + 3x^6} \] Thus, the derivative of \( 5e^{5x^4 + 3x^6} \) is \( 100x^3 e^{5x^4 + 3x^6} + 90x^5 e^{5x^4 + 3x^6} \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning