Use the above alogirithm to find P for the bases B = {1, 62, 63} and C = {₁, C2, C3} C-B for R³ where ~0~B~0~0~0~8 - [8]. b3 C₁ = 2 b₁ = b₂ = = = 2 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Algorithm for Finding \( P_{C \leftarrow B} \)**

Given two bases \( \mathcal{B} = \{\vec{b}_1, \ldots, \vec{b}_n\} \) and \( \mathcal{C} = \{\vec{c}_1, \ldots, \vec{c}_n\} \) for \( \mathbb{R}^n \), putting the augmented matrix

\[
[P_C \,|\, P_B]
\]

in reduced row echelon form produces the augmented matrix

\[
[I \,|\, P_{C \leftarrow B}]
\]

**Example Application:**

Use the above algorithm to find \( P_{C \leftarrow B} \) for the bases \( \mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} \) and \( \mathcal{C} = \{\vec{c}_1, \vec{c}_2, \vec{c}_3\} \) for \( \mathbb{R}^3 \) where

\[
\vec{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{b}_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \quad \vec{b}_3 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}
\]

\[
\vec{c}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{c}_2 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \quad \vec{c}_3 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}
\]

This algorithm provides a structured approach to finding the change of basis matrix from one basis to another in vector space.
Transcribed Image Text:**Algorithm for Finding \( P_{C \leftarrow B} \)** Given two bases \( \mathcal{B} = \{\vec{b}_1, \ldots, \vec{b}_n\} \) and \( \mathcal{C} = \{\vec{c}_1, \ldots, \vec{c}_n\} \) for \( \mathbb{R}^n \), putting the augmented matrix \[ [P_C \,|\, P_B] \] in reduced row echelon form produces the augmented matrix \[ [I \,|\, P_{C \leftarrow B}] \] **Example Application:** Use the above algorithm to find \( P_{C \leftarrow B} \) for the bases \( \mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} \) and \( \mathcal{C} = \{\vec{c}_1, \vec{c}_2, \vec{c}_3\} \) for \( \mathbb{R}^3 \) where \[ \vec{b}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{b}_2 = \begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}, \quad \vec{b}_3 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix} \] \[ \vec{c}_1 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \vec{c}_2 = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}, \quad \vec{c}_3 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} \] This algorithm provides a structured approach to finding the change of basis matrix from one basis to another in vector space.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,