Use Taylor series expansions to determine the error in the approximation
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Answer is given BUT need full detailed steps and
process since I don't understand the concept.
![**Using Taylor Series Expansions to Determine the Error in the Approximation**
To approximate the fourth derivative of \( u \) at \( t \), we use the following expression:
\[
u^{iv}(t) \approx \frac{u(t+2h) - 4u(t+h) + 6u(t) - 4u(t-h) + u(t-2h)}{h^4}
\]
This simplifies to:
\[
= \frac{h^4 u^{iv} + \frac{1}{6} h^6 u^{(vi)}}{h^4}
\]
\[
= u^{iv} + \frac{1}{6} h^2 u^{(vi)}
\]
The last term, \(\frac{1}{6} h^2 u^{(vi)}\), represents the error in the approximation.
**Hint**: Expand \( u(t + 2h) \), etc., using Taylor series up to the \( h^6 \) term.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcb460c0c-d029-4e90-a450-1d82490780a1%2F37098954-cb78-45f1-82d2-a1adb6066165%2Fpgo1mcf_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Using Taylor Series Expansions to Determine the Error in the Approximation**
To approximate the fourth derivative of \( u \) at \( t \), we use the following expression:
\[
u^{iv}(t) \approx \frac{u(t+2h) - 4u(t+h) + 6u(t) - 4u(t-h) + u(t-2h)}{h^4}
\]
This simplifies to:
\[
= \frac{h^4 u^{iv} + \frac{1}{6} h^6 u^{(vi)}}{h^4}
\]
\[
= u^{iv} + \frac{1}{6} h^2 u^{(vi)}
\]
The last term, \(\frac{1}{6} h^2 u^{(vi)}\), represents the error in the approximation.
**Hint**: Expand \( u(t + 2h) \), etc., using Taylor series up to the \( h^6 \) term.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
In this question we expand by using formula
up to h6
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)