Use suitable sum-to-product formulas to rewrite the following expression in terms of tan3x. sin 2x + sin 4x cos 2x + cos 4x Use the paperclip button below to attach files.
Use suitable sum-to-product formulas to rewrite the following expression in terms of tan3x. sin 2x + sin 4x cos 2x + cos 4x Use the paperclip button below to attach files.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Trigonometric Transformations and Identitites
#### Problem Statement
**Use suitable sum-to-product formulas to rewrite the following expression in terms of \(\tan 3x\):**
\[
\frac{\sin 2x + \sin 4x}{\cos 2x + \cos 4x}
\]
#### Solution
To transform the given expression using sum-to-product identities, follow these steps:
1. **Sum-to-Product Identity for Sine:**
\[
\sin A + \sin B = 2 \sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
Apply the identity to \(\sin 2x + \sin 4x\):
\[
\sin 2x + \sin 4x = 2 \sin \left( \frac{2x + 4x}{2} \right) \cos \left( \frac{2x - 4x}{2} \right)
= 2 \sin(3x) \cos(-x)
\]
Since \(\cos(-x) = \cos x\), we have:
\[
\sin 2x + \sin 4x = 2 \sin(3x) \cos(x)
\]
2. **Sum-to-Product Identity for Cosine:**
\[
\cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
Apply the identity to \(\cos 2x + \cos 4x\):
\[
\cos 2x + \cos 4x = 2 \cos \left( \frac{2x + 4x}{2} \right) \cos \left( \frac{2x - 4x}{2} \right)
= 2 \cos(3x) \cos(-x)
\]
Since \(\cos(-x) = \cos x\), we have:
\[
\cos 2x + \cos 4x = 2 \cos(3x) \cos(x)
\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffd95c06f-a3ea-4120-9338-f910c4caee1b%2F295b9536-7d31-4efd-812c-8c75ce3fb9b8%2Fc31vm3l_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Trigonometric Transformations and Identitites
#### Problem Statement
**Use suitable sum-to-product formulas to rewrite the following expression in terms of \(\tan 3x\):**
\[
\frac{\sin 2x + \sin 4x}{\cos 2x + \cos 4x}
\]
#### Solution
To transform the given expression using sum-to-product identities, follow these steps:
1. **Sum-to-Product Identity for Sine:**
\[
\sin A + \sin B = 2 \sin \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
Apply the identity to \(\sin 2x + \sin 4x\):
\[
\sin 2x + \sin 4x = 2 \sin \left( \frac{2x + 4x}{2} \right) \cos \left( \frac{2x - 4x}{2} \right)
= 2 \sin(3x) \cos(-x)
\]
Since \(\cos(-x) = \cos x\), we have:
\[
\sin 2x + \sin 4x = 2 \sin(3x) \cos(x)
\]
2. **Sum-to-Product Identity for Cosine:**
\[
\cos A + \cos B = 2 \cos \left( \frac{A + B}{2} \right) \cos \left( \frac{A - B}{2} \right)
\]
Apply the identity to \(\cos 2x + \cos 4x\):
\[
\cos 2x + \cos 4x = 2 \cos \left( \frac{2x + 4x}{2} \right) \cos \left( \frac{2x - 4x}{2} \right)
= 2 \cos(3x) \cos(-x)
\]
Since \(\cos(-x) = \cos x\), we have:
\[
\cos 2x + \cos 4x = 2 \cos(3x) \cos(x)
\
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 6 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning