Use substitution to convert the integral to the integral of rational functions. Then use partial fractions to evaluate the integral. 2+e¯ O In (1 + 2e*) + C O In (1 + 2e*) + C Oin (2 +e) + C Oin (1 + 2e-*) +C

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
## Solving Integrals Using Substitution and Partial Fractions

**Problem Statement:**

Use substitution to convert the integral to the integral of rational functions. Then use partial fractions to evaluate the integral.

\[ \int \frac{1}{2 + e^{-x}} dx \]

### Choices:
1. \( \ln(1 + 2e^x) + C \)
2. \( \frac{1}{2}\ln(1 + 2e^x) + C \)
3. \( \frac{1}{2}\ln(2 + e^{-x}) + C \)
4. \( \frac{1}{2}\ln(1 + 2e^{-x}) + C \)

### Solution Steps:

1. **Substitution**: In this type of problem, you typically try to simplify the integrand by choosing an appropriate substitution. 

2. **Partial Fractions**: Once the integrand is a rational function, you can decompose it into simpler fractions which can be integrated individually.

By following these steps, you can determine which of the four options is correct. Understanding the process of substitution and partial fractions is essential for solving integrals of this nature.
Transcribed Image Text:## Solving Integrals Using Substitution and Partial Fractions **Problem Statement:** Use substitution to convert the integral to the integral of rational functions. Then use partial fractions to evaluate the integral. \[ \int \frac{1}{2 + e^{-x}} dx \] ### Choices: 1. \( \ln(1 + 2e^x) + C \) 2. \( \frac{1}{2}\ln(1 + 2e^x) + C \) 3. \( \frac{1}{2}\ln(2 + e^{-x}) + C \) 4. \( \frac{1}{2}\ln(1 + 2e^{-x}) + C \) ### Solution Steps: 1. **Substitution**: In this type of problem, you typically try to simplify the integrand by choosing an appropriate substitution. 2. **Partial Fractions**: Once the integrand is a rational function, you can decompose it into simpler fractions which can be integrated individually. By following these steps, you can determine which of the four options is correct. Understanding the process of substitution and partial fractions is essential for solving integrals of this nature.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning