Use Stokes' theorem to evaluate V ×F· î dS where = (9y²z, 4xz, 2x²y²) and S is the paraboloid z = x² + y² inside the cylinder x? + y² = 1, oriented upward.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use Stokes' theorem to evaluate
V XF- î ds where F = (9y?z, 4xz, 2x²y²) and S is the paraboloid z = x² + y? inside the cylinder x? + y? = 1, oriented upward.
Transcribed Image Text:Use Stokes' theorem to evaluate V XF- î ds where F = (9y?z, 4xz, 2x²y²) and S is the paraboloid z = x² + y? inside the cylinder x? + y? = 1, oriented upward.
Expert Solution
Step 1

Step:-1

Stoke's Theorem:-

s×F.n dS=F.dr

Now, given that F=9y2z, 4xz, 2x2y2 and paraboloid z=x2+y2 inside the cylinder x2+y2=1z=1

So, boundary curve is circle x2+y2=1 with radius 1, in the plane  z=1.

Take a vector r(x,y,z)=xi +y j +zk, parameterization this vector so,

Take x=cost, y=sint and z=1 then

r(t)=cost i +sint j +kdrdt=-sint i + cost j +0drdt=-sint, cost, 0

and 0t2π  

F=9y2z, 4xz, 2x2y2F(t)=9sin2t, 4cost, 2cos2tsin2t (as x=cost, y=sint, z=1)

Step:-2

F.dr=02πF(t).drdt.dt=02π9sin2t, 4cost, 2cos2tsin2t-sint, cost,0dtF.dr==02π-9sin3t+4cos2tdtNote:-cos(2t)=2cos2t-12cos2t=cos(2t)+1 and sin(3t)=3sint-4sin3tsin3t=3sint-sin(3t)4F.dr=02π-93sint-sin(3t)4+2cos(2t)+1 dt=02π-274sint +94sin(3t)+2cos(2t)+2dtF.dr=274cost02π+ -912cost02π+sint02π+2t02πF.dr=0+0+0+4π=4πF.dr=4π

 

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Triple Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,