Use Stokes' theorem to evaluate      Scurl(F) · dS. F(x, y, z) = exy cos(z) i + x2z j + xy k,    S is the hemisphere  x =  sqrt 49 − y2 − z2,  oriented in the direction of the positive x-axis

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
100%

16.8 #5. 

Use Stokes' theorem to evaluate 
 
 
S
curl(F) · dS.
F(x, y, z) = exy cos(z) i + x2z j + xy k,
   S is the hemisphere 
x = 
sqrt 49 − y2 − z2
,
 oriented in the direction of the positive x-axis
**Problem Statement:**

Use Stokes' theorem to evaluate the surface integral:

\[
\iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}.
\]

**Given Vector Field:**

\[
\mathbf{F}(x, y, z) = e^{xy} \cos(z) \, \mathbf{i} + x^2 z \, \mathbf{j} + xy \, \mathbf{k}
\]

where:

- \( \mathbf{i} \), \( \mathbf{j} \), and \( \mathbf{k} \) are the unit vectors in the x, y, and z directions respectively.

**Surface Definition:**

The surface \( S \) is defined as the hemisphere:

\[
x = \sqrt{49 - y^2 - z^2}
\]

This hemisphere is oriented in the direction of the positive x-axis.
Transcribed Image Text:**Problem Statement:** Use Stokes' theorem to evaluate the surface integral: \[ \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}. \] **Given Vector Field:** \[ \mathbf{F}(x, y, z) = e^{xy} \cos(z) \, \mathbf{i} + x^2 z \, \mathbf{j} + xy \, \mathbf{k} \] where: - \( \mathbf{i} \), \( \mathbf{j} \), and \( \mathbf{k} \) are the unit vectors in the x, y, and z directions respectively. **Surface Definition:** The surface \( S \) is defined as the hemisphere: \[ x = \sqrt{49 - y^2 - z^2} \] This hemisphere is oriented in the direction of the positive x-axis.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning