Use Stokes' Theorem to evaluate ( r(t) curl (F) · ds). F(x,y,z) = 2x + 2yj + zk S is the hemisphere x² + y² + z² = 36 y ≥ 0 is oriented in the direction of the postive y - aixs 5 cos (t) + 5 sin(t)j + 6 tk = 0 ≤ t ≤ 2π
Use Stokes' Theorem to evaluate ( r(t) curl (F) · ds). F(x,y,z) = 2x + 2yj + zk S is the hemisphere x² + y² + z² = 36 y ≥ 0 is oriented in the direction of the postive y - aixs 5 cos (t) + 5 sin(t)j + 6 tk = 0 ≤ t ≤ 2π
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Use Stokes' Theorem to evaluate (curl (F). ds).
F(x,y,z) = 2xî + 2yĵ + z k
S is the hemisphere x² + y² + z² = 36
is oriented in the direction of the postive y - aixs
r(t) 5 cos(t) i + 5 sin(t)j + 6 tk
y ≥ 0
0 ≤ t ≤ 2π](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F08b91cf5-1653-44e8-801d-9fbaa3cebc7f%2F58aa2f66-d322-4999-866b-69293433a9c6%2Ft7s8y6_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Use Stokes' Theorem to evaluate (curl (F). ds).
F(x,y,z) = 2xî + 2yĵ + z k
S is the hemisphere x² + y² + z² = 36
is oriented in the direction of the postive y - aixs
r(t) 5 cos(t) i + 5 sin(t)j + 6 tk
y ≥ 0
0 ≤ t ≤ 2π
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)