Use Simpson's rule with n = 6 to approximate: -dx Give the answer correct to 4 decimal places: Simpson's Rule : * f(x)dx ≈ [f(x0) + 4f(x;) + 2f(x ₂) + 4 f(x 3) + wheren is even and Ax= b-a n + 2f(x₂-2) + 4f(xn-1) + f(x₂)]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use Simpson's rule with n = 6 to approximate:
-dx
Give the answer correct to 4 decimal places:
Simpson's Rule : * f(x)dx ≈ [f(x0) + 4f(x;) + 2f(x ₂) + 4 f(x 3) +
wheren is even and Ax =
b-a
n
+ 2f(x₁-2) + 4f(xn-1) + f(x₂)]
Transcribed Image Text:Use Simpson's rule with n = 6 to approximate: -dx Give the answer correct to 4 decimal places: Simpson's Rule : * f(x)dx ≈ [f(x0) + 4f(x;) + 2f(x ₂) + 4 f(x 3) + wheren is even and Ax = b-a n + 2f(x₁-2) + 4f(xn-1) + f(x₂)]
Expert Solution
Step 1: Introduction.

Given information:

Provided integral isintegral subscript 1 superscript 4 1 over x squared d x

The number of sub-intervals is given as n equals 6.

To find:

Approximate value of the integral using Simpson's rule.

Formula used:

integral subscript a superscript b f left parenthesis x right parenthesis d x almost equal to fraction numerator increment x over denominator 3 end fraction open square brackets open square brackets f open parentheses x subscript 0 close parentheses plus f open parentheses x subscript n close parentheses close square brackets plus 2 open square brackets f open parentheses x subscript 2 close parentheses plus f open parentheses x subscript 4 close parentheses plus... plus f open parentheses x subscript n minus 2 end subscript close parentheses close square brackets plus 4 open square brackets f open parentheses x subscript 1 close parentheses plus f open parentheses x subscript 3 close parentheses plus... plus f open parentheses x subscript n minus 1 end subscript close parentheses close square brackets close square brackets

Where,

 and  are the lower and upper limits of integration.

n is the number of sub intervals

increment x is the width of each sub interval, given by increment x equals fraction numerator b minus a over denominator n end fraction.

steps

Step by step

Solved in 4 steps with 32 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,