Use separation of variables to find a product solution to the following: д н ди -u=1.k>0 дх2 дг

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Give Answer

Use separation of variables to find a product solution to the following:
d²u
du
k- --u--, k>0
dx²
dr
u=e¹ ( A₁ e ² -ka 2
-ka 21
cosh ax+Be
sinh ax
u=e¹(A₂e² -kez 21
cos ax+B₂e"
sin ax
u=e¹(Azx+B₂)
Ou=e"(Aphacosh ax +B phosinh x
-kez 21
u=e
=e-¹ (A₂e-ka₁²0
'cos ax + B₂e" sin ax
x)
u=e
= e¯¹ (A₂x+B₂)
Ou=e^¹ (A₁e²
-ka²
—ku sinh x
cosh ax +Be
-ka21
e¯¹(A₂¤¯
u=e
cos ax+ B₂e
sin ax
u=e-¹(Azx+B₂)
Ou=e^¹ (A₁e²
-kez ²1
— ka-sinh (x
cosh ax+B₁e"
21
u=e
2-¹ (A₂eka²10
cos ax+ Bekasin ax)
u=e=¹' (Azx+B₂)
ka
Ou=el(1 phủ coshx+B pha sinh ax)
u=e¹(A₂e-ka²1 c cos ax +Be-kasin ax)
u=e¹(Azx+B₂)
Ou=e¹(A₁e`
-kez 21
-ka²1.
cosh ax+Be
sinh ax
u=e¹(A₂eka²cos ax + B₁eka ²¹ sin ax)
u=e¹(Azx+B₂)
-ka21
-ka 2
Transcribed Image Text:Use separation of variables to find a product solution to the following: d²u du k- --u--, k>0 dx² dr u=e¹ ( A₁ e ² -ka 2 -ka 21 cosh ax+Be sinh ax u=e¹(A₂e² -kez 21 cos ax+B₂e" sin ax u=e¹(Azx+B₂) Ou=e"(Aphacosh ax +B phosinh x -kez 21 u=e =e-¹ (A₂e-ka₁²0 'cos ax + B₂e" sin ax x) u=e = e¯¹ (A₂x+B₂) Ou=e^¹ (A₁e² -ka² —ku sinh x cosh ax +Be -ka21 e¯¹(A₂¤¯ u=e cos ax+ B₂e sin ax u=e-¹(Azx+B₂) Ou=e^¹ (A₁e² -kez ²1 — ka-sinh (x cosh ax+B₁e" 21 u=e 2-¹ (A₂eka²10 cos ax+ Bekasin ax) u=e=¹' (Azx+B₂) ka Ou=el(1 phủ coshx+B pha sinh ax) u=e¹(A₂e-ka²1 c cos ax +Be-kasin ax) u=e¹(Azx+B₂) Ou=e¹(A₁e` -kez 21 -ka²1. cosh ax+Be sinh ax u=e¹(A₂eka²cos ax + B₁eka ²¹ sin ax) u=e¹(Azx+B₂) -ka21 -ka 2
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,