Use ratio test to determine if the series is absolutely convergent or not.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Use ratio test to determine if the series is absolutely convergent or not.
![The image presents the mathematical expression for an infinite series:
\[
\sum_{n=0}^{\infty} \frac{(-1)^n (1+i)^{2n}}{(2n)!}
\]
### Components of the Expression:
- **Sigma Notation (\(\sum\))**: Represents the summation of terms from \(n = 0\) to infinity (\(\infty\)).
- **\((-1)^n\)**: Alternating sign factor, which changes the sign of each term depending on whether \(n\) is even or odd.
- **\((1+i)^{2n}\)**: The base \(1+i\) is raised to the power of \(2n\). Here, \(i\) is the imaginary unit (i.e., \(i^2 = -1\)).
- **Denominator \((2n)!\)**: Factorial of \(2n\), which is the product of all positive integers up to \(2n\).
This series resembles the Taylor expansion of trigonometric or hyperbolic functions involving complex numbers.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F2c222075-437b-48bc-845a-e38a8bd40737%2Fe75fe44a-c390-427e-9a43-ca707f2811a2%2F6uo8b93_processed.png&w=3840&q=75)
Transcribed Image Text:The image presents the mathematical expression for an infinite series:
\[
\sum_{n=0}^{\infty} \frac{(-1)^n (1+i)^{2n}}{(2n)!}
\]
### Components of the Expression:
- **Sigma Notation (\(\sum\))**: Represents the summation of terms from \(n = 0\) to infinity (\(\infty\)).
- **\((-1)^n\)**: Alternating sign factor, which changes the sign of each term depending on whether \(n\) is even or odd.
- **\((1+i)^{2n}\)**: The base \(1+i\) is raised to the power of \(2n\). Here, \(i\) is the imaginary unit (i.e., \(i^2 = -1\)).
- **Denominator \((2n)!\)**: Factorial of \(2n\), which is the product of all positive integers up to \(2n\).
This series resembles the Taylor expansion of trigonometric or hyperbolic functions involving complex numbers.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)