Use R6 to determine the area under the curve for f(x) = (2-1) on [2,5].

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Title: Calculating the Area Under the Curve Using Riemann Sums**

**Objective:**
Learn how to use Riemann Sums to determine the area under a curve for the specific function.

**Problem Statement:**
Use \( R_6 \) to determine the area under the curve for \( f(x) = \frac{1}{x(x-1)} \) on the interval \([2, 5]\).

**Instructions:**

1. **Understand the function and interval:**
   - The function provided is \( f(x) = \frac{1}{x(x-1)} \).
   - The interval on which we need to calculate the area is \([2, 5]\).

2. **Define Riemann Sum:**
   - Riemann Sums provide an approximation of the area under a curve over a specified interval.
   - \( R_n \) represents a Riemann Sum with \( n \) subintervals.

3. **Steps to Calculate \( R_6 \):**
   - **Step 1:** Determine the width of each subinterval (\( \Delta x \)):
     \[
     \Delta x = \frac{b-a}{n} = \frac{5-2}{6} = 0.5
     \]
   - **Step 2:** Identify the endpoints of each subinterval:
     \[
     a = 2, \quad a+\Delta x = 2.5, \quad a + 2\Delta x = 3, \quad a + 3\Delta x = 3.5, \quad a + 4\Delta x = 4, \quad a + 5\Delta x = 4.5, \quad b = 5
     \]
   - **Step 3:** Evaluate the function \( f(x) \) at each right endpoint. These points \( x_i \) are \( 2.5, 3, 3.5, 4, 4.5, 5 \).

   - **Step 4:** Calculate the sum:
     \[
     R_6 = \sum_{i=1}^{6} f(x_i) \Delta x
     \]
     Substitute \( x_i \) values and \( f(x_i) \) into the sum and calculate each term.

4. **Conclusion:**
   The result from
Transcribed Image Text:**Title: Calculating the Area Under the Curve Using Riemann Sums** **Objective:** Learn how to use Riemann Sums to determine the area under a curve for the specific function. **Problem Statement:** Use \( R_6 \) to determine the area under the curve for \( f(x) = \frac{1}{x(x-1)} \) on the interval \([2, 5]\). **Instructions:** 1. **Understand the function and interval:** - The function provided is \( f(x) = \frac{1}{x(x-1)} \). - The interval on which we need to calculate the area is \([2, 5]\). 2. **Define Riemann Sum:** - Riemann Sums provide an approximation of the area under a curve over a specified interval. - \( R_n \) represents a Riemann Sum with \( n \) subintervals. 3. **Steps to Calculate \( R_6 \):** - **Step 1:** Determine the width of each subinterval (\( \Delta x \)): \[ \Delta x = \frac{b-a}{n} = \frac{5-2}{6} = 0.5 \] - **Step 2:** Identify the endpoints of each subinterval: \[ a = 2, \quad a+\Delta x = 2.5, \quad a + 2\Delta x = 3, \quad a + 3\Delta x = 3.5, \quad a + 4\Delta x = 4, \quad a + 5\Delta x = 4.5, \quad b = 5 \] - **Step 3:** Evaluate the function \( f(x) \) at each right endpoint. These points \( x_i \) are \( 2.5, 3, 3.5, 4, 4.5, 5 \). - **Step 4:** Calculate the sum: \[ R_6 = \sum_{i=1}^{6} f(x_i) \Delta x \] Substitute \( x_i \) values and \( f(x_i) \) into the sum and calculate each term. 4. **Conclusion:** The result from
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning