Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Topic: Application of the Fundamental Theorem of Calculus**
**Objective:** Use Part 1 of the Fundamental Theorem of Calculus (and properties of definite integrals and the Chain Rule) to evaluate the expression.
**Expression to Evaluate:**
\[ \frac{d}{dx} \left[ \int_{x^3}^{10} \sqrt{t^6 + 1} \, dt \right] \]
**Explanation:**
This problem requires the use of the Fundamental Theorem of Calculus, which connects differentiation and integration. Part 1 of this theorem states that if \( F(x) \) is an antiderivative of \( f(x) \), then:
\[ \frac{d}{dx} \left[ \int_{a}^{g(x)} f(t) \, dt \right] = f(g(x)) \cdot g'(x) \]
In this case, we will apply this theorem along with the Chain Rule to evaluate the integral, treating the variable limit of integration as a function of \( x \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc3f88845-b007-4fd1-915c-0698883559f2%2F62f68ec2-94af-4972-a1da-52d965b6a295%2Ffw8f5d_processed.png&w=3840&q=75)
Transcribed Image Text:**Topic: Application of the Fundamental Theorem of Calculus**
**Objective:** Use Part 1 of the Fundamental Theorem of Calculus (and properties of definite integrals and the Chain Rule) to evaluate the expression.
**Expression to Evaluate:**
\[ \frac{d}{dx} \left[ \int_{x^3}^{10} \sqrt{t^6 + 1} \, dt \right] \]
**Explanation:**
This problem requires the use of the Fundamental Theorem of Calculus, which connects differentiation and integration. Part 1 of this theorem states that if \( F(x) \) is an antiderivative of \( f(x) \), then:
\[ \frac{d}{dx} \left[ \int_{a}^{g(x)} f(t) \, dt \right] = f(g(x)) \cdot g'(x) \]
In this case, we will apply this theorem along with the Chain Rule to evaluate the integral, treating the variable limit of integration as a function of \( x \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning