Use Newton’s Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) using a graphing utility and compare the results.               f(x) = −x3 + 2.7x2 + 3.55x − 2.422

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use Newton’s Method to approximate the zero(s) of the function. Continue the iterations until two successive approximations differ by less than 0.001. Then find the zero(s) using a graphing utility and compare the results.               f(x) = −x3 + 2.7x2 + 3.55x − 2.422

Expert Solution
Step 1

The given function fx=-x3+2.7x2+3.55x-2.422.

We have to find the zeros of the function by using Newton's method.

Step 2

Newton's method algorithm:

xn+1=xn-fxnf'xn.

fx=-x3+2.7x2+3.55x-2.422

Differentiate with respect to x,

f'x=-3x2+5.4x+3.55

The function values,

x -2 -1 0 1 3 4
fx 9.278 -2.272 -2.422 2.828 5.528 -9.022

The zeros lies on the intervals -2, -1, 0, 1, and 3, 4.

Step 3

The root lies on the interval -2, -1:

Choose the initial value x0=-2

First iteration:

fx0=f-2=--23+2.7-22+3.55-2-2.422=9.278f'x0=f'-2=-3-22+5.4-2+3.55=-19.25

x1=x0-fx0f'x0=-2-9.278-19.25x1=-1.518

Second iteration:

fx1=f-1.518=--1.5183+2.7-1.5182+3.55-1.518-2.422=1.909f'x1=f'-1.518=-3-1.5182+5.4-1.518+3.55=-11.5605

x2=x1-fx1f'x1=-1.518-1.909-11.5605x2=-1.3529

Third iteration:

fx2=f-1.3529=--1.35293+2.7-1.35292+3.55-1.3529-2.422=0.1933f'x2=f'-1.3529=-3-1.35292+5.4-1.3529+3.55=-9.2466

x3=x2-fx2f'x2=-1.3529-0.1933-9.2466x3=-1.332

Fourth iteration:

fx3=f-1.332=--1.3323+2.7-1.3322+3.55-1.332-2.422=0.0029f'x3=f'-1.332=-3-1.3322+5.4-1.332+3.55=-8.9653

x4=x3-fx3f'x3=-1.332-0.0029-8.9653x4=-1.3317

Fifth iteration:

fx4=f-1.3317=--1.33173+2.7-1.33172+3.55-1.3317-2.422=0f'x4=f'-1.3317=-3-1.33172+5.4-1.3317+3.55=-8.9609

x5=x4-fx4f'x4=-1.3317-0-8.9609x5=-1.3317

After five iterations, the root lies on the interval -2, -1 is x=-1.3317.

Step 4

The root lies on the interval 0, 1:

Choose the initial value x0=0+12=0.5

First iteration:

fx0=f0.5=-0.53+2.70.52+3.550.5-2.422=-0.097f'x0=f'0.5=-30.52+5.40.5+3.55=5.5

x1=x0-fx0f'x0=0.5--0.0975.5x1=0.5176

Second iteration:

fx1=f0.5176=-0.51763+2.70.51762+3.550.5176-2.422=0.0004f'x1=f'0.5176=-30.51762+5.40.5176+3.55=5.5414

x2=x1-fx1f'x1=0.5176-0.00045.5414x2=0.5176

After two iterations, the root lies on the interval 0, 1 is x=0.5176.

steps

Step by step

Solved in 7 steps with 1 images

Blurred answer
Knowledge Booster
Numerical Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,