Use method of Laplace Transforms. y"-6y +13y = 0, y(0) = 1, y (0) = -3.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Laplace table:
Inverse Laplace table:
f(t)
tn
eat f(t)
sin at
cos at
y' (t)
y"(t)
F(s)
1/sn
F(sa)
F(s) = L[ƒ(t)]
n!/sn+1
F(sa)
1/(s² + a²)
s/(s² + a²)
a/(s² + a²)
s/(s² + a²)
SY (s)- y(0)
s²Y(s) — sy(0) — y′(0)
f(t) = L-¹[F(s)]
t"-1/(n − 1)!
eat f(t)
(1/a) sin at
cos at](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F95aeff90-eae1-41d1-a6d5-24c543733ee7%2F4a77790c-b206-490e-ba62-46a9fc7d51e4%2Fgog4gbo_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Laplace table:
Inverse Laplace table:
f(t)
tn
eat f(t)
sin at
cos at
y' (t)
y"(t)
F(s)
1/sn
F(sa)
F(s) = L[ƒ(t)]
n!/sn+1
F(sa)
1/(s² + a²)
s/(s² + a²)
a/(s² + a²)
s/(s² + a²)
SY (s)- y(0)
s²Y(s) — sy(0) — y′(0)
f(t) = L-¹[F(s)]
t"-1/(n − 1)!
eat f(t)
(1/a) sin at
cos at

Transcribed Image Text:Use method of Laplace Transforms.
y"-6y + 13y = 0,
y(0) = 1,
y (0) = -3.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

