Use Laplace transforms to solve the following initial value problem. x'' + 4x' + 13x = te¯¹; x(0) = 0, x'(0) = 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Problem Statement:**

Use Laplace transforms to solve the following initial value problem.

\[ x'' + 4x' + 13x = te^{-t} \]

Initial conditions:
- \( x(0) = 0 \)
- \( x'(0) = 4 \)

**Solution:**

\[ x(t) = \ldots \] (Solution to be determined using Laplace transforms)
Transcribed Image Text:**Problem Statement:** Use Laplace transforms to solve the following initial value problem. \[ x'' + 4x' + 13x = te^{-t} \] Initial conditions: - \( x(0) = 0 \) - \( x'(0) = 4 \) **Solution:** \[ x(t) = \ldots \] (Solution to be determined using Laplace transforms)
## Laplace Transform Pairs

The table below provides a list of common Laplace transforms and their inverse transforms, useful for various applications in engineering and physics.

### Laplace Transform Formulas

#### Left Side: Basic Functions

1. **Constant Function (1):**
   - \( f(t) = 1 \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s} \quad (s > 0) \)

2. **Linear Function (t):**
   - \( f(t) = t \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s^2} \quad (s > 0) \)

3. **Power Function (\(t^n\)):**
   - \( f(t) = t^n \Rightarrow \mathcal{L}\{f(t)\} = \frac{n!}{s^{n+1}} \quad (s > 0) \)

4. **General Power Function (\(t^a\)):**
   - \( f(t) = t^a \Rightarrow \mathcal{L}\{f(t)\} = \frac{\Gamma(a+1)}{s^{n+1}} \quad (s > 0) \)

5. **Exponential Function (\(e^{at}\)):**
   - \( f(t) = e^{at} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s-a} \quad (s > a) \)

#### Right Side: Trigonometric and Hyperbolic Functions

1. **Cosine Function (\(\cos kt\)):**
   - \( f(t) = \cos kt \Rightarrow \mathcal{L}\{f(t)\} = \frac{s}{s^2 + k^2} \quad (s > 0) \)

2. **Sine Function (\(\sin kt\)):**
   - \( f(t) = \sin kt \Rightarrow \mathcal{L}\{f(t)\} = \frac{k}{s^2 + k^2} \quad (s > 0) \)

3. **Hyperbolic Cosine Function (\(\cosh kt\)):**
   - \( f(t) = \cosh kt \Rightarrow \mathcal{L}\{f
Transcribed Image Text:## Laplace Transform Pairs The table below provides a list of common Laplace transforms and their inverse transforms, useful for various applications in engineering and physics. ### Laplace Transform Formulas #### Left Side: Basic Functions 1. **Constant Function (1):** - \( f(t) = 1 \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s} \quad (s > 0) \) 2. **Linear Function (t):** - \( f(t) = t \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s^2} \quad (s > 0) \) 3. **Power Function (\(t^n\)):** - \( f(t) = t^n \Rightarrow \mathcal{L}\{f(t)\} = \frac{n!}{s^{n+1}} \quad (s > 0) \) 4. **General Power Function (\(t^a\)):** - \( f(t) = t^a \Rightarrow \mathcal{L}\{f(t)\} = \frac{\Gamma(a+1)}{s^{n+1}} \quad (s > 0) \) 5. **Exponential Function (\(e^{at}\)):** - \( f(t) = e^{at} \Rightarrow \mathcal{L}\{f(t)\} = \frac{1}{s-a} \quad (s > a) \) #### Right Side: Trigonometric and Hyperbolic Functions 1. **Cosine Function (\(\cos kt\)):** - \( f(t) = \cos kt \Rightarrow \mathcal{L}\{f(t)\} = \frac{s}{s^2 + k^2} \quad (s > 0) \) 2. **Sine Function (\(\sin kt\)):** - \( f(t) = \sin kt \Rightarrow \mathcal{L}\{f(t)\} = \frac{k}{s^2 + k^2} \quad (s > 0) \) 3. **Hyperbolic Cosine Function (\(\cosh kt\)):** - \( f(t) = \cosh kt \Rightarrow \mathcal{L}\{f
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,