Use laplace transform to solve the initial value problem: 3rd order IVP : 11 y + 24" y' - 2y = sin 3t y(s) = 52 +12 (8+2) ( 5+1) (5-1) (5² +9) D 4 642 B 6 +1 + C + 8-1 Ds TE 5²19

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use laplace transform to solve the initial value problem :
3rd order LVP
: y "" + 2y" - y' - 2y = sin 3t
y(s)
R
52
C=
5² +12
(8+2) ( 5+1) (5-1) (5² +9)
+12
(5+1) (5-1) (5² +9)
6²+12
(5+2) (5-1)(√²+9)
5² +12
(5+2)(5+1) (5²+9)
16
39
18+2
S = -2
1
so-1
S = 1
- 13
20
-
541
=
4
542
B
8 +1
(-2)² +12
(-2+1) (-2-1) ((-2) ² +9)
12+12
13
60
8-1
* Please Help me continue htt
HOW
THIS rounion is.
gotten
+
(-1) ² +12
(-1+2) (-1-1) ( (-1) ² +9)
(1+2)(1+1)(1²+9)
8-1
D TE
C
√2 +9
METHOD
Thank you :>
+
16
39
Ds TE
15219
13
20
13
60
AND please teACH me
Transcribed Image Text:Use laplace transform to solve the initial value problem : 3rd order LVP : y "" + 2y" - y' - 2y = sin 3t y(s) R 52 C= 5² +12 (8+2) ( 5+1) (5-1) (5² +9) +12 (5+1) (5-1) (5² +9) 6²+12 (5+2) (5-1)(√²+9) 5² +12 (5+2)(5+1) (5²+9) 16 39 18+2 S = -2 1 so-1 S = 1 - 13 20 - 541 = 4 542 B 8 +1 (-2)² +12 (-2+1) (-2-1) ((-2) ² +9) 12+12 13 60 8-1 * Please Help me continue htt HOW THIS rounion is. gotten + (-1) ² +12 (-1+2) (-1-1) ( (-1) ² +9) (1+2)(1+1)(1²+9) 8-1 D TE C √2 +9 METHOD Thank you :> + 16 39 Ds TE 15219 13 20 13 60 AND please teACH me
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,