Use Lagrange multipliers to find the absolute maximum and minimum values of the function z = f(x, y) =1-xy³ subject to the constraint equation x² +12y² = 16.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Finding Absolute Maximum and Minimum Values Using Lagrange Multipliers**

---

**Objective:**

Use Lagrange multipliers to determine the absolute maximum and minimum values of the function 
\[ z = f(x, y) = 1 - xy^3 \]
subject to the constraint equation 
\[ x^2 + 12y^2 = 16. \]

---

**Instructions:**

1. **Understand the Problem:**
   - You are given a function \( z = 1 - xy^3 \) to optimize (i.e., find its maximum and minimum values).
   - There is a constraint on the variables \( x \) and \( y \) defined by the equation \( x^2 + 12y^2 = 16 \).

2. **Formulate Using Lagrange Multipliers:**
   - Introduce a Lagrange multiplier \( \lambda \) (lambda).
   - Set up the Lagrangian function:
     \[ \mathcal{L}(x, y, \lambda) = 1 - xy^3 + \lambda (x^2 + 12y^2 - 16) \]
   
3. **Solve the System of Equations:**
   - Compute the partial derivatives of \( \mathcal{L} \) with respect to \( x \), \( y \), and \( \lambda \):
     \[ \frac{\partial \mathcal{L}}{\partial x} = -y^3 + 2\lambda x = 0 \]
     \[ \frac{\partial \mathcal{L}}{\partial y} = -3xy^2 + 24\lambda y = 0 \]
     \[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + 12y^2 - 16 = 0 \]
   
   - Solve this system of equations to find the critical points.

4. **Determine Maximum and Minimum Values:**
   - Substitute the critical points back into the original function \( z = 1 - xy^3 \) to find the corresponding values.
   - Identify which points give the absolute maximum and minimum values.

---

**Example Solution:**

1. From \( \frac{\partial \mathcal{L}}{\partial x} = -y^3 + 2\lambda x = 0 \):
   \[ \lambda = \frac
Transcribed Image Text:**Finding Absolute Maximum and Minimum Values Using Lagrange Multipliers** --- **Objective:** Use Lagrange multipliers to determine the absolute maximum and minimum values of the function \[ z = f(x, y) = 1 - xy^3 \] subject to the constraint equation \[ x^2 + 12y^2 = 16. \] --- **Instructions:** 1. **Understand the Problem:** - You are given a function \( z = 1 - xy^3 \) to optimize (i.e., find its maximum and minimum values). - There is a constraint on the variables \( x \) and \( y \) defined by the equation \( x^2 + 12y^2 = 16 \). 2. **Formulate Using Lagrange Multipliers:** - Introduce a Lagrange multiplier \( \lambda \) (lambda). - Set up the Lagrangian function: \[ \mathcal{L}(x, y, \lambda) = 1 - xy^3 + \lambda (x^2 + 12y^2 - 16) \] 3. **Solve the System of Equations:** - Compute the partial derivatives of \( \mathcal{L} \) with respect to \( x \), \( y \), and \( \lambda \): \[ \frac{\partial \mathcal{L}}{\partial x} = -y^3 + 2\lambda x = 0 \] \[ \frac{\partial \mathcal{L}}{\partial y} = -3xy^2 + 24\lambda y = 0 \] \[ \frac{\partial \mathcal{L}}{\partial \lambda} = x^2 + 12y^2 - 16 = 0 \] - Solve this system of equations to find the critical points. 4. **Determine Maximum and Minimum Values:** - Substitute the critical points back into the original function \( z = 1 - xy^3 \) to find the corresponding values. - Identify which points give the absolute maximum and minimum values. --- **Example Solution:** 1. From \( \frac{\partial \mathcal{L}}{\partial x} = -y^3 + 2\lambda x = 0 \): \[ \lambda = \frac
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,