Use integration, the Direct Comparison Test, or the Limit Comparison Test to test the integral for convergence. 00 dx O x +9 Choose the correct answer below. O A. By the Limit Comparison Test, the integral converges because lim 1/ x8 + 9 = 1 and - diverges. 1/x* X00 OB. 1/ xº + 9 By the Limit Comparison Test, the integral converges because lim =1 and converges. 1/x* X00 OC. By the Direct Comparison Test, the integral diverges because 0 << 1 diverges. on [0,00) and X' O D. The integral cannot be evaluated using integration, so the integral diverges.
Use integration, the Direct Comparison Test, or the Limit Comparison Test to test the integral for convergence. 00 dx O x +9 Choose the correct answer below. O A. By the Limit Comparison Test, the integral converges because lim 1/ x8 + 9 = 1 and - diverges. 1/x* X00 OB. 1/ xº + 9 By the Limit Comparison Test, the integral converges because lim =1 and converges. 1/x* X00 OC. By the Direct Comparison Test, the integral diverges because 0 << 1 diverges. on [0,00) and X' O D. The integral cannot be evaluated using integration, so the integral diverges.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![Use integration, the Direct Comparison Test, or the Limit Comparison Test
to test the integral for convergence.
dx
x +9
Choose the correct answer below.
O A.
By the Limit Comparison Test, the integral converges because lim
1/x8 +9
= 1 and
1 diverges.
1/x
X00
OB.
1/x8 +9
By the Limit Comparison Test, the integral converges because lim
= 1 and
converges.
1/x
X00
OC.
By the Direct Comparison Test, the integral diverges because 0<-
1
1
on [0,00) and
diverges.
O D. The integral cannot be evaluated using integration, so the integral diverges.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F20842ed2-95d2-4e58-9ad7-59c805d174bf%2Fe3f05d2f-4f09-4e78-89bf-f442cabcc26b%2Fil7iyrx_processed.png&w=3840&q=75)
Transcribed Image Text:Use integration, the Direct Comparison Test, or the Limit Comparison Test
to test the integral for convergence.
dx
x +9
Choose the correct answer below.
O A.
By the Limit Comparison Test, the integral converges because lim
1/x8 +9
= 1 and
1 diverges.
1/x
X00
OB.
1/x8 +9
By the Limit Comparison Test, the integral converges because lim
= 1 and
converges.
1/x
X00
OC.
By the Direct Comparison Test, the integral diverges because 0<-
1
1
on [0,00) and
diverges.
O D. The integral cannot be evaluated using integration, so the integral diverges.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)