Use induction to prove that Σmn1(2j + 1) = 3η2 3n²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Proof by Mathematical Induction
We are given the following statement to prove using induction:
\[
\sum_{j=n}^{2n-1} (2j + 1) = 3n^2
\]
#### Step 1: Base Case
First, we need to verify the base case where \( n = 1 \).
When \( n = 1 \):
\[
\sum_{j=1}^{2 \cdot 1 - 1} (2j + 1) = 2 \cdot 1 + 1 = 3
\]
And:
\[
3 \cdot 1^2 = 3
\]
Thus, the base case holds true:
\[
\sum_{j=1}^{1} (2j + 1) = 3 = 3 \cdot 1^2
\]
#### Step 2: Inductive Hypothesis
Assume that for some integer \( k \geq 1 \), the statement holds true:
\[
\sum_{j=k}^{2k-1} (2j + 1) = 3k^2
\]
#### Step 3: Inductive Step
Prove that if the statement holds for \( n = k \), it must also hold for \( n = k+1 \).
Consider:
\[
\sum_{j=k+1}^{2(k+1)-1} (2j + 1)
\]
Expressing the sum:
\[
\sum_{j=k+1}^{2(k+1)-1} (2j + 1) = \sum_{j=k+1}^{2k+1} (2j + 1)
\]
Break it into two parts:
\[
\left( \sum_{j=k}^{2k-1} (2j + 1) \right) + (2(2k) + 1) + (2(2k+1) + 1)
\]
Using the inductive hypothesis, replace the sum up to \( 2k-1 \):
\[
3k^2 + (4k + 1) + (4k + 3)
\]
Simplifying the sum:
\[
3k^2 + 4k + 1 + 4k + 3 = 3k^2 + 8k + 4
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3eb514bb-44ba-433b-9221-45dffb06f396%2F6d775694-87bb-4a51-bef4-d03165bfe45b%2Frt3g0gc_processed.png&w=3840&q=75)
Transcribed Image Text:### Proof by Mathematical Induction
We are given the following statement to prove using induction:
\[
\sum_{j=n}^{2n-1} (2j + 1) = 3n^2
\]
#### Step 1: Base Case
First, we need to verify the base case where \( n = 1 \).
When \( n = 1 \):
\[
\sum_{j=1}^{2 \cdot 1 - 1} (2j + 1) = 2 \cdot 1 + 1 = 3
\]
And:
\[
3 \cdot 1^2 = 3
\]
Thus, the base case holds true:
\[
\sum_{j=1}^{1} (2j + 1) = 3 = 3 \cdot 1^2
\]
#### Step 2: Inductive Hypothesis
Assume that for some integer \( k \geq 1 \), the statement holds true:
\[
\sum_{j=k}^{2k-1} (2j + 1) = 3k^2
\]
#### Step 3: Inductive Step
Prove that if the statement holds for \( n = k \), it must also hold for \( n = k+1 \).
Consider:
\[
\sum_{j=k+1}^{2(k+1)-1} (2j + 1)
\]
Expressing the sum:
\[
\sum_{j=k+1}^{2(k+1)-1} (2j + 1) = \sum_{j=k+1}^{2k+1} (2j + 1)
\]
Break it into two parts:
\[
\left( \sum_{j=k}^{2k-1} (2j + 1) \right) + (2(2k) + 1) + (2(2k+1) + 1)
\]
Using the inductive hypothesis, replace the sum up to \( 2k-1 \):
\[
3k^2 + (4k + 1) + (4k + 3)
\]
Simplifying the sum:
\[
3k^2 + 4k + 1 + 4k + 3 = 3k^2 + 8k + 4
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)