use Euler's Midpoint Method with the time step indicated to approximate the given value of y(t). y(0.5); dy = y +t, y(0) = 1, h=0.1 %3D dt

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
use Euler's Midpoint Method with the time step indicated to approximate the given value of y(t).
y(0.5);
dy
= y +t, y(0) = 1, h=0.1
%3D
dt
Transcribed Image Text:use Euler's Midpoint Method with the time step indicated to approximate the given value of y(t). y(0.5); dy = y +t, y(0) = 1, h=0.1 %3D dt
Expert Solution
Step 1

Given:

y'=dydt=y+ty0=1, h=0.1.

To find: y0.5 using the Euler's Midpoint method.

Step 2

By Euler's midpoint method we have,
ym+1=ym+hftm+h2, ym+h2ftm, ym

We have,
ft0, y0=f0, 1=1
t0+h2=0+0.12=0.05
y0+h2ft0, y0=1+0.121=1.05

ft0+h2, y0+h2ft0, y0=f0.05,1.05=1.1

y1=y0+hft0+h2, y0+h2ft0, y0=1+0.11.1=1.11.

Now taking x1, y1 in place of x0, y0 and repeating the above process we get,

ft1, y1=f0.1, 1.11=1.21
t1+h2=0.1+0.12=0.15
y1+h2ft1, y1=1.11+0.121.21=1.1705

ft1+h2, y1+h2ft1, y1=f0.15, 1.1705=1.3205

y2=y1+hft1+h2, y1+h2ft1, y1=1.11+0.11.3205=1.2421.

Again, taking x2, y2 in place of x1, y1 and repeating the above process we get,

ft2, y2=f0.2, 1.2421=1.442
t2+h2=0.2+0.12=0.25
y2+h2ft2, y2=1.2421+0.121.442=1.3142

ft2+h2, y2+h2ft2, y2=f0.25, 1.3142=1.5642

y3=y2+hft2+h2, y2+h2ft2, y2=1.2421+0.11.5642=1.3985.

steps

Step by step

Solved in 3 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,