Use Euler's method with step size 0.4 to estimate y(0.8), where y(x) is the solution of the initial-value problem y' = 3x + y°, y(0) = – 1. y(0.8) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Using Euler’s Method for Estimating Values of Differential Equations**

### Problem Statement

Use Euler’s method with step size 0.4 to estimate \( y(0.8) \), where \( y(x) \) is the solution of the initial-value problem

\[ y' = 3x + y^2, \quad y(0) = -1. \]

### Solution

To solve this problem using Euler’s method, we follow these steps:

1. **Initial Setup:**
   - Given differential equation: \( y' = 3x + y^2 \)
   - Initial value: \( y(0) = -1 \)
   - Step size: \( h = 0.4 \)
  
2. **Table of Computations:**

| Step | \( x \) | \( y \)                | \( y' = 3x + y^2 \) | \( y_{\text{new}} = y + h \cdot y' \) |
|------|--------|-------------------------|---------------------|-------------------------------------|
| 0    | 0.0    | -1.000                  | 3(0.0) + (-1.000)^2 = 1.000       | -1.000 + 0.4 × 1.000 = -0.600     |
| 1    | 0.4    | -0.600                  | 3(0.4) + (-0.600)^2 = 1.800 + 0.360 = 2.160       | -0.600 + 0.4 × 2.160 = 0.264      |
| 2    | 0.8    | Calculated at Step 1    | -                     | -                                   |

### Estimate Calculation:

- **Step 0:**
  \[ y(0) = -1 \]
  \[ y'(0) = 3(0) + (-1)^2 = 1 \]
  \[ y(0.4) \approx y(0) + h \cdot y'(0) \]
  \[ y(0.4) \approx -1 + 0.4 \cdot 1 = -0.6 \]

- **Step 1:**
  \[ y'(0.4) = 3(0
Transcribed Image Text:**Using Euler’s Method for Estimating Values of Differential Equations** ### Problem Statement Use Euler’s method with step size 0.4 to estimate \( y(0.8) \), where \( y(x) \) is the solution of the initial-value problem \[ y' = 3x + y^2, \quad y(0) = -1. \] ### Solution To solve this problem using Euler’s method, we follow these steps: 1. **Initial Setup:** - Given differential equation: \( y' = 3x + y^2 \) - Initial value: \( y(0) = -1 \) - Step size: \( h = 0.4 \) 2. **Table of Computations:** | Step | \( x \) | \( y \) | \( y' = 3x + y^2 \) | \( y_{\text{new}} = y + h \cdot y' \) | |------|--------|-------------------------|---------------------|-------------------------------------| | 0 | 0.0 | -1.000 | 3(0.0) + (-1.000)^2 = 1.000 | -1.000 + 0.4 × 1.000 = -0.600 | | 1 | 0.4 | -0.600 | 3(0.4) + (-0.600)^2 = 1.800 + 0.360 = 2.160 | -0.600 + 0.4 × 2.160 = 0.264 | | 2 | 0.8 | Calculated at Step 1 | - | - | ### Estimate Calculation: - **Step 0:** \[ y(0) = -1 \] \[ y'(0) = 3(0) + (-1)^2 = 1 \] \[ y(0.4) \approx y(0) + h \cdot y'(0) \] \[ y(0.4) \approx -1 + 0.4 \cdot 1 = -0.6 \] - **Step 1:** \[ y'(0.4) = 3(0
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,