Use either indirect proof or conditional proof (or both) and the eighteen rules NOTE: Include the numbers of the first and last indented premises when listing you identify with CP or IP. A B C D E 2 MP Dist 1 2 3 MT DN V = () HS Trans PREMISE (A v B) > C PREMISE (~A v D) DE PREMISE DS Impl CD Equiv CONCLUSION CVE Simp Conj Add Taut ACP Exp DM CP

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use either indirect proof or conditional proof (or both)and the eighteen rules of inference to derive the conclusions of the symbolized arguments. Please answer as quickly as possible and show all steps and how to get those steps.

**Instructions for Using Indirect or Conditional Proof Techniques in Logic**

---

### Logical Symbols and Rules

#### Symbols:
- **~**: Negation
- **∙**: Conjunction
- **∨**: Disjunction
- **⊃**: Conditional
- **=**: Biconditional
- **Parentheses**: Indicate grouping
- **Braces**, **Brackets**: Used similarly for additional clarity and grouping

#### Eighteen Rules of Inference and Equivalence:
1. **MP**: Modus Ponens
2. **MT**: Modus Tollens
3. **HS**: Hypothetical Syllogism
4. **DS**: Disjunctive Syllogism
5. **CD**: Constructive Dilemma
6. **Simp**: Simplification
7. **Conj**: Conjunction
8. **Add**: Addition
9. **DM**: De Morgan’s Laws
10. **Dist**: Distribution
11. **DN**: Double Negation
12. **Trans**: Transposition
13. **Impl**: Implication
14. **Equiv**: Equivalence
15. **Exp**: Exportation
16. **Taut**: Tautology
17. **ACP**: Assumption for Conditional Proof
18. **CP**: Conditional Proof

### Premises and Conclusions

1. **Premise 1**: \((A \vee B) ⊃ C\)

2. **Premise 2**: \((\sim A \vee D) ⊃ E\)

   **Conclusion**: \(C \vee E\)

3. **Premise**: (Blank for further derivation)

---

#### Additional Instructions:
- **Note**: Include the numbers of the first and last indented premises when listing proofs identified with Conditional Proof (CP) or Indirect Proof (IP).

This educational layout provides a framework for constructing proofs in logical arguments using formal methods.
Transcribed Image Text:**Instructions for Using Indirect or Conditional Proof Techniques in Logic** --- ### Logical Symbols and Rules #### Symbols: - **~**: Negation - **∙**: Conjunction - **∨**: Disjunction - **⊃**: Conditional - **=**: Biconditional - **Parentheses**: Indicate grouping - **Braces**, **Brackets**: Used similarly for additional clarity and grouping #### Eighteen Rules of Inference and Equivalence: 1. **MP**: Modus Ponens 2. **MT**: Modus Tollens 3. **HS**: Hypothetical Syllogism 4. **DS**: Disjunctive Syllogism 5. **CD**: Constructive Dilemma 6. **Simp**: Simplification 7. **Conj**: Conjunction 8. **Add**: Addition 9. **DM**: De Morgan’s Laws 10. **Dist**: Distribution 11. **DN**: Double Negation 12. **Trans**: Transposition 13. **Impl**: Implication 14. **Equiv**: Equivalence 15. **Exp**: Exportation 16. **Taut**: Tautology 17. **ACP**: Assumption for Conditional Proof 18. **CP**: Conditional Proof ### Premises and Conclusions 1. **Premise 1**: \((A \vee B) ⊃ C\) 2. **Premise 2**: \((\sim A \vee D) ⊃ E\) **Conclusion**: \(C \vee E\) 3. **Premise**: (Blank for further derivation) --- #### Additional Instructions: - **Note**: Include the numbers of the first and last indented premises when listing proofs identified with Conditional Proof (CP) or Indirect Proof (IP). This educational layout provides a framework for constructing proofs in logical arguments using formal methods.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 11 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,