Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Title: Applying DeMoivre's Theorem to Calculate Powers of Complex Numbers**
**Instructions:**
Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard (a + bi) form.
**Problem:**
Calculate \((1 + i)^3\).
**Explanation:**
DeMoivre's Theorem states that for any complex number \(z = r(\cos \theta + i \sin \theta)\), its \(n\)th power is given by:
\[z^n = r^n (\cos(n\theta) + i \sin(n\theta))\]
**Steps:**
1. Convert the complex number \(1 + i\) to polar form.
2. Use DeMoivre's Theorem to raise the complex number to the 3rd power.
3. Convert the result back to standard form (a + bi).
**Solution:**
1. **Convert to Polar Form:**
\[1 + i\]
The modulus \(r\) is:
\[r = \sqrt{1^2 + 1^2} = \sqrt{2}\]
The argument \(\theta\) is:
\[\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}\]
Therefore, in polar form:
\[1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)\]
2. **Apply DeMoivre's Theorem:**
\[(1 + i)^3 = \left(\sqrt{2}\right)^3 \left(\cos(3 \cdot \frac{\pi}{4}) + i \sin(3 \cdot \frac{\pi}{4})\right)\]
\[= 2\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)\]
3. **Convert Back to Standard Form:**
\[\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}, \quad \sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2} \]
\[(1 + i)^3 =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7fab864d-7419-4b8c-bc50-25971d273c3c%2F28dddc78-77ff-4dc9-85b1-2ee77ab466e0%2Frik0avp_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Applying DeMoivre's Theorem to Calculate Powers of Complex Numbers**
**Instructions:**
Use DeMoivre's Theorem to find the indicated power of the complex number. Write the result in standard (a + bi) form.
**Problem:**
Calculate \((1 + i)^3\).
**Explanation:**
DeMoivre's Theorem states that for any complex number \(z = r(\cos \theta + i \sin \theta)\), its \(n\)th power is given by:
\[z^n = r^n (\cos(n\theta) + i \sin(n\theta))\]
**Steps:**
1. Convert the complex number \(1 + i\) to polar form.
2. Use DeMoivre's Theorem to raise the complex number to the 3rd power.
3. Convert the result back to standard form (a + bi).
**Solution:**
1. **Convert to Polar Form:**
\[1 + i\]
The modulus \(r\) is:
\[r = \sqrt{1^2 + 1^2} = \sqrt{2}\]
The argument \(\theta\) is:
\[\theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4}\]
Therefore, in polar form:
\[1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4}\right)\]
2. **Apply DeMoivre's Theorem:**
\[(1 + i)^3 = \left(\sqrt{2}\right)^3 \left(\cos(3 \cdot \frac{\pi}{4}) + i \sin(3 \cdot \frac{\pi}{4})\right)\]
\[= 2\sqrt{2} \left(\cos \frac{3\pi}{4} + i \sin \frac{3\pi}{4}\right)\]
3. **Convert Back to Standard Form:**
\[\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}, \quad \sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2} \]
\[(1 + i)^3 =
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning