Use Cramer's rule to solve the system. 5x+8y=3 3x + 2y = 13 What is the solution of the system? X = y= (Type integers or simplified fractions.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Section Title: Solving Systems of Equations Using Cramer's Rule

### Example Problem

**Given System of Equations:**
\[
5x + 8y = 3
\]
\[
3x + 2y = 13
\]

**Task:** Use Cramer's rule to solve the system.

### Solution Process

To solve this system using Cramer's rule, follow these steps:

1. **Write the System in Matrix Form:**

   Let the system be represented as \(AX = B\), where:
   \[
   A = \begin{pmatrix}
   5 & 8 \\
   3 & 2 \\
   \end{pmatrix}, 
   X = \begin{pmatrix}
   x \\
   y \\
   \end{pmatrix}, 
   B = \begin{pmatrix}
   3 \\
   13 \\
   \end{pmatrix}
   \]

2. **Calculate Determinant of A (\(\Delta\)):**

   \[
   \Delta = \text{det}(A) = \begin{vmatrix}
   5 & 8 \\
   3 & 2 \\
   \end{vmatrix} = 5(2) - 8(3) = 10 - 24 = -14
   \]

3. **Calculate \(\Delta_{x}\):**
   
   Replace the first column of \(A\) with \(B\):
   \[
   A_{x} = \begin{pmatrix}
   3 & 8 \\
   13 & 2 \\
   \end{pmatrix}
   \]
   \[
   \Delta_{x} = \text{det}(A_{x}) = \begin{vmatrix}
   3 & 8 \\
   13 & 2 \\
   \end{vmatrix} = 3(2) - 8(13) = 6 - 104 = -98
   \]

4. **Calculate \(\Delta_{y}\):**

   Replace the second column of \(A\) with \(B\):
   \[
   A_{y} = \begin{pmatrix}
   5 & 3 \\
   3 & 13 \\
   \end{pmatrix}
   \]
   \
Transcribed Image Text:## Section Title: Solving Systems of Equations Using Cramer's Rule ### Example Problem **Given System of Equations:** \[ 5x + 8y = 3 \] \[ 3x + 2y = 13 \] **Task:** Use Cramer's rule to solve the system. ### Solution Process To solve this system using Cramer's rule, follow these steps: 1. **Write the System in Matrix Form:** Let the system be represented as \(AX = B\), where: \[ A = \begin{pmatrix} 5 & 8 \\ 3 & 2 \\ \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ \end{pmatrix}, B = \begin{pmatrix} 3 \\ 13 \\ \end{pmatrix} \] 2. **Calculate Determinant of A (\(\Delta\)):** \[ \Delta = \text{det}(A) = \begin{vmatrix} 5 & 8 \\ 3 & 2 \\ \end{vmatrix} = 5(2) - 8(3) = 10 - 24 = -14 \] 3. **Calculate \(\Delta_{x}\):** Replace the first column of \(A\) with \(B\): \[ A_{x} = \begin{pmatrix} 3 & 8 \\ 13 & 2 \\ \end{pmatrix} \] \[ \Delta_{x} = \text{det}(A_{x}) = \begin{vmatrix} 3 & 8 \\ 13 & 2 \\ \end{vmatrix} = 3(2) - 8(13) = 6 - 104 = -98 \] 4. **Calculate \(\Delta_{y}\):** Replace the second column of \(A\) with \(B\): \[ A_{y} = \begin{pmatrix} 5 & 3 \\ 3 & 13 \\ \end{pmatrix} \] \
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 13 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,