Use Cramer's Rule to solve (if possible) the system of linear equations. If not possible, enter IMPOSSIBLE 4x1- X2 + x3 = -7 2x1 + 2x2 + 3x3 = 14 5x₁2x2 + 6x3 = +80

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Solving Systems of Linear Equations Using Cramer's Rule

**Problem:**

Use Cramer's Rule to solve (if possible) the system of linear equations shown below. If not possible, enter IMPOSSIBLE.

\[
\begin{align*}
4x_1 - x_2 + x_3 &= -7 \\
2x_1 + 2x_2 + 3x_3 &= 14 \\
5x_1 - 2x_2 + 6x_3 &= 8
\end{align*}
\]

**Instructions:**

1. **Identify the coefficients matrix (A):**
   
   Coefficients of \(x_1\), \(x_2\), and \(x_3\) from the system of equations.

   \[
   A = \begin{pmatrix}
   4 & -1 & 1 \\
   2 & 2 & 3 \\
   5 & -2 & 6
   \end{pmatrix}
   \]

2. **Compute the determinant of matrix A (\(\det(A)\)):**
   
   \[
   \det(A) = 4 \begin{vmatrix}
   2 & 3 \\
   -2 & 6
   \end{vmatrix}
   -(-1) \begin{vmatrix}
   2 & 3 \\
   5 & 6
   \end{vmatrix}
   + 1 \begin{vmatrix}
   2 & 2 \\
   5 & -2
   \end{vmatrix}
   \]

3. **Determinants of the 2x2 matrices:**

   \[
   \begin{vmatrix}
   2 & 3 \\
   -2 & 6
   \end{vmatrix} = (2 * 6 - 3 * (-2)) = 12 + 6 = 18
   \]

   \[
   \begin{vmatrix}
   2 & 3 \\
   5 & 6
   \end{vmatrix} = (2 * 6 - 3 * 5) = 12 - 15 = -3
   \]

   \[
   \begin{vmatrix}
   2 & 2 \\
   5 & -2
Transcribed Image Text:### Solving Systems of Linear Equations Using Cramer's Rule **Problem:** Use Cramer's Rule to solve (if possible) the system of linear equations shown below. If not possible, enter IMPOSSIBLE. \[ \begin{align*} 4x_1 - x_2 + x_3 &= -7 \\ 2x_1 + 2x_2 + 3x_3 &= 14 \\ 5x_1 - 2x_2 + 6x_3 &= 8 \end{align*} \] **Instructions:** 1. **Identify the coefficients matrix (A):** Coefficients of \(x_1\), \(x_2\), and \(x_3\) from the system of equations. \[ A = \begin{pmatrix} 4 & -1 & 1 \\ 2 & 2 & 3 \\ 5 & -2 & 6 \end{pmatrix} \] 2. **Compute the determinant of matrix A (\(\det(A)\)):** \[ \det(A) = 4 \begin{vmatrix} 2 & 3 \\ -2 & 6 \end{vmatrix} -(-1) \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} + 1 \begin{vmatrix} 2 & 2 \\ 5 & -2 \end{vmatrix} \] 3. **Determinants of the 2x2 matrices:** \[ \begin{vmatrix} 2 & 3 \\ -2 & 6 \end{vmatrix} = (2 * 6 - 3 * (-2)) = 12 + 6 = 18 \] \[ \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = (2 * 6 - 3 * 5) = 12 - 15 = -3 \] \[ \begin{vmatrix} 2 & 2 \\ 5 & -2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,