Use an inverse matrix to find [x] for the given x and B. 8 - 3 {:][*][:] X= - 6 2 B = [X] B (Simplify your answer.) 8 - 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Hello there! can you help me solve problem? Thank you!

Use an inverse matrix to find \([x]_B\) for the given \(x\) and \(B\).

\[
B = \left\{ \begin{bmatrix} 8 \\ -6 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}, \quad x = \begin{bmatrix} 8 \\ -4 \end{bmatrix}
\]

\[ 
[x]_B = \boxed{\phantom{}} 
\]

(Simplify your answer.)
Transcribed Image Text:Use an inverse matrix to find \([x]_B\) for the given \(x\) and \(B\). \[ B = \left\{ \begin{bmatrix} 8 \\ -6 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\}, \quad x = \begin{bmatrix} 8 \\ -4 \end{bmatrix} \] \[ [x]_B = \boxed{\phantom{}} \] (Simplify your answer.)
The set \( B = \{ 1-t^2, \, t + t^2, \, 1 + 2t - t^2 \} \) is a basis for \( \mathbb{P}_2 \). Find the coordinate vector of \( p(t) = -7 - t + 10t^2 \) relative to \( B \).

\[
[p]_B = \boxed{\phantom{0}}
\]

(Simplify your answer.)
Transcribed Image Text:The set \( B = \{ 1-t^2, \, t + t^2, \, 1 + 2t - t^2 \} \) is a basis for \( \mathbb{P}_2 \). Find the coordinate vector of \( p(t) = -7 - t + 10t^2 \) relative to \( B \). \[ [p]_B = \boxed{\phantom{0}} \] (Simplify your answer.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,