Use an integral to find the area of the surface parameterized by r(u, v) = (u cos v, u sin v, u²), u € [−1, 1], v € [0, π].

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
5
5. Use an integral to find the area of the surface parameterized by
r(u, v) = (u cos v, u sin v, u²),
u [1,1], v [0, π].
Transcribed Image Text:5. Use an integral to find the area of the surface parameterized by r(u, v) = (u cos v, u sin v, u²), u [1,1], v [0, π].
Expert Solution
Step 1: Set up the integral

The surface parameterized by

                     r open parentheses u comma v close parentheses space equals space left parenthesis space u space cos space v comma space u space sin space v comma space u squared space right parenthesis ,   u space element of space open square brackets negative 1 comma space 1 close square brackets space comma space space v space element of space open square brackets 0 comma space straight pi close square brackets

                r subscript u space equals space fraction numerator partial differential r over denominator partial differential u end fraction space equals space open parentheses cos space v comma space sin space v space comma space 2 u close parentheses

               r subscript v space equals space fraction numerator partial differential r over denominator partial differential v end fraction space equals space open parentheses space minus u space sin space v comma space u space space cos space space v space comma space space 0 close parentheses

                   r subscript u space cross times space r subscript v space equals space open vertical bar table row i j k row cell cos space v end cell cell sin space v end cell cell 2 u end cell row cell negative u space sin space v end cell cell u space cos space v end cell 0 end table close vertical bar

                                equals space i space open square brackets space 0 minus 2 u squared cos space v space close square brackets space minus space j open square brackets space 0 plus 2 u to the power of 2 space end exponent sin space v space close square brackets space plus k open square brackets space u space cos squared v space plus u sin squared space v space close square brackets

                                equals space left parenthesis space minus 2 u squared space cos space v space comma space minus 2 u squared space sin space v comma space u space right parenthesis

                 open vertical bar r subscript u space cross times space r subscript v close vertical bar space equals space square root of open parentheses negative 2 u squared space cos space v close parentheses squared plus open parentheses negative 2 u squared space sin space v close parentheses squared plus open parentheses u close parentheses squared space end root

                                 equals space square root of 4 u to the power of 4 plus u squared end root

                                  equals space u square root of 1 plus open parentheses 2 u close parentheses squared end root

steps

Step by step

Solved in 3 steps with 15 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,