Use an addition or subtraction formula to find the exact value in simplest form. Rationalize your denominator, if necessary. tan 15°-tan 45° -0 1+ tan 15° tan 45° S olo X
Use an addition or subtraction formula to find the exact value in simplest form. Rationalize your denominator, if necessary. tan 15°-tan 45° -0 1+ tan 15° tan 45° S olo X
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![**Mathematical Problem Breakdown**
**Topic:** Using Addition or Subtraction Formula to Simplify Trigonometric Expressions
**Objective:** Learn how to use an addition or subtraction formula in trigonometry to find the exact value of a given expression and rationalize the denominator if necessary.
---
### Problem Statement
Given the trigonometric expression:
\[
\frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
### Instructions:
1. **Use an addition or subtraction formula** to find the exact value of the given expression in simplest form.
2. **Rationalize your denominator**, if necessary.
#### Explanation of the Problem
- **Trigonometric Functions:** This problem involves the tangent function, which is one of the primary trigonometric functions.
- **Angles Given:** The angles provided in the problem are 15 degrees and 45 degrees.
### Using the Tangent Subtraction Formula
The tangent subtraction formula is given by:
\[
\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}
\]
Here, \(A = 15^\circ\) and \(B = 45^\circ\).
Plugging the values into the formula:
\[
\tan(15^\circ - 45^\circ) = \frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
\[
\tan(-30^\circ) = \frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
### Simplifying the Expression
- We know that \(\tan(-\theta) = -\tan(\theta)\).
- Also, \(\tan 45^\circ = 1\).
So,
\[
\tan(-30^\circ) = -\tan 30^\circ
\]
Using the known value, \(\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\):
\[
\tan(-30^\circ) = -\frac{\sqrt{3}}{3}
\]
### Final Answer
\[
\frac{\tan 15^\circ - \tan 45^\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe92e694a-8dce-4f5c-a0b3-7db66cedb1e5%2F1500718c-89b2-42be-8eae-78a8b33bf26e%2Fo4x8t4h_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Mathematical Problem Breakdown**
**Topic:** Using Addition or Subtraction Formula to Simplify Trigonometric Expressions
**Objective:** Learn how to use an addition or subtraction formula in trigonometry to find the exact value of a given expression and rationalize the denominator if necessary.
---
### Problem Statement
Given the trigonometric expression:
\[
\frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
### Instructions:
1. **Use an addition or subtraction formula** to find the exact value of the given expression in simplest form.
2. **Rationalize your denominator**, if necessary.
#### Explanation of the Problem
- **Trigonometric Functions:** This problem involves the tangent function, which is one of the primary trigonometric functions.
- **Angles Given:** The angles provided in the problem are 15 degrees and 45 degrees.
### Using the Tangent Subtraction Formula
The tangent subtraction formula is given by:
\[
\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}
\]
Here, \(A = 15^\circ\) and \(B = 45^\circ\).
Plugging the values into the formula:
\[
\tan(15^\circ - 45^\circ) = \frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
\[
\tan(-30^\circ) = \frac{\tan 15^\circ - \tan 45^\circ}{1 + \tan 15^\circ \tan 45^\circ}
\]
### Simplifying the Expression
- We know that \(\tan(-\theta) = -\tan(\theta)\).
- Also, \(\tan 45^\circ = 1\).
So,
\[
\tan(-30^\circ) = -\tan 30^\circ
\]
Using the known value, \(\tan 30^\circ = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}\):
\[
\tan(-30^\circ) = -\frac{\sqrt{3}}{3}
\]
### Final Answer
\[
\frac{\tan 15^\circ - \tan 45^\
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning