Use a Maclaurin series in this table to obtain the Maclaurin series for the given function. f(x) = x cos(8x) Σ n = 0 Important Maclaurin series and their radii of convergence. 1 x = n=0 x" = 3 1 + x + x² + x ³ + .. ex = n=0 ∞ n! X 1 + Σ(-1)" n=0 3 + + + 1! 2! 3! 2n+1 (2n+1)! =x- 33 3! sin x = + 55 5! | R = 1 R = 8 x7 7! + R 8 = X 8 Σ(-1)". COS X = n=0 +2n (2n)! Σ(-1)" -1 tan x = n=0 = 2n+1 -1 xn In(1 + x) = Σ(−1)"−1 x n=1 ∞ k n 1 = x = x 2! - + x .4 - x 6 4! 6! + x 3 R = X 7 x + 3 + 5 7 R = 1 X 3 4 x X + 2 3 - R = 1 (1 + x)² = Σ (*) ** = n k(k − 1) 2 k(k-1)(k2) 3 = 1+kx+ x² + x + · R = 1 2! 3! n=0 n

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Use a Maclaurin series in this table to obtain the Maclaurin series for the given function.
f(x) = x cos(8x)
Σ
n = 0
Transcribed Image Text:Use a Maclaurin series in this table to obtain the Maclaurin series for the given function. f(x) = x cos(8x) Σ n = 0
Important Maclaurin series and their radii of convergence.
1
x
=
n=0
x"
=
3
1 + x + x² + x ³ + ..
ex
=
n=0
∞
n!
X
1 +
Σ(-1)"
n=0
3
+ + +
1! 2! 3!
2n+1
(2n+1)!
=x-
33
3!
sin x =
+
55
5!
|
R = 1
R =
8
x7
7!
+
R
8
= X
8
Σ(-1)".
COS X =
n=0
+2n
(2n)!
Σ(-1)"
-1
tan x =
n=0
=
2n+1
-1 xn
In(1 + x) = Σ(−1)"−1 x
n=1
∞ k
n
1
= x
= x
2!
-
+
x
.4
-
x
6
4! 6!
+
x
3
R =
X
7
x
+
3
+
5
7
R = 1
X
3
4
x
X
+
2 3
-
R = 1
(1 + x)² = Σ (*) ** =
n
k(k − 1) 2
k(k-1)(k2)
3
=
1+kx+
x² +
x + ·
R = 1
2!
3!
n=0
n
Transcribed Image Text:Important Maclaurin series and their radii of convergence. 1 x = n=0 x" = 3 1 + x + x² + x ³ + .. ex = n=0 ∞ n! X 1 + Σ(-1)" n=0 3 + + + 1! 2! 3! 2n+1 (2n+1)! =x- 33 3! sin x = + 55 5! | R = 1 R = 8 x7 7! + R 8 = X 8 Σ(-1)". COS X = n=0 +2n (2n)! Σ(-1)" -1 tan x = n=0 = 2n+1 -1 xn In(1 + x) = Σ(−1)"−1 x n=1 ∞ k n 1 = x = x 2! - + x .4 - x 6 4! 6! + x 3 R = X 7 x + 3 + 5 7 R = 1 X 3 4 x X + 2 3 - R = 1 (1 + x)² = Σ (*) ** = n k(k − 1) 2 k(k-1)(k2) 3 = 1+kx+ x² + x + · R = 1 2! 3! n=0 n
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning