uppose a researcher conducting a follow up study obtains a sample of n = 25 students classified as healthy weight and a sample of n = 36 students classified as overweight. Each student completes the food variety questionnaire, and the healthy-weight group produces a mean of M = 4.01 for the fatty, sugary snack category compared to a mean of M = 4.48 for the overweight group. The results from the Brunt, Rhee, and Zhong study showed an overall mean variety score of μ = 4.22 for the discretionary sweets or fats food group. Assume that the distribution of scores is approximately normal with a standard deviation of ?σ = 0.60. Based on the sample of n = 25 healthy-weight students, can you conclude that healthy-weight students eat significantly fewer fatty, sugary snacks than the overall population? Use a one-tailed test with ?α. = .05   For the sample of healthy-weight students, the standard error is ??σM =                             [ Select ]                          ["0.12", "0.53", "0.36", "0.14"]            , and z =                             [ Select ]                          ["-1.75", "-8.75", "-0.35", "-2.85"]            , which is                             [ Select ]                          ["smaller", "larger", "equal to"]            than the critical value of                             [ Select ]                          ["-1.64", "-1.96", "-2.33", "-2.58"]            .  This sample of healthy-weight students                             [ Select ]                          ["consumed", "did not consume"]            significantly fewer fatty, sugary snacks than the overall population average.

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question

Brunt, Rhee, and Zhong (2008) surveyed 557 undergraduate college students to examine their weight status, health behaviors, and diet. Using body mass index (BMI), they classified the students into four categories: underweight, healthy weight, overweight, and obese. They also measured dietary variety by counting the number of different foods each student ate from several food groups. Note that the researchers are not measuring the amount of food eaten but rather the number of different foods eaten (variety, not quantity).

Nonetheless, it was somewhat surprising that the results showed no differences among the four weight categories that were related to eating fatty and/ or sugary snacks.


Suppose a researcher conducting a follow up study obtains a sample of n = 25 students classified as healthy weight and a sample of n = 36 students classified as overweight. Each student completes the food variety questionnaire, and the healthy-weight group produces a mean of M = 4.01 for the fatty, sugary snack category compared to a mean of M = 4.48 for the overweight group. The results from the Brunt, Rhee, and Zhong study showed an overall mean variety score of μ = 4.22 for the discretionary sweets or fats food group. Assume that the distribution of scores is approximately normal with a standard deviation of ?σ = 0.60.

Based on the sample of n = 25 healthy-weight students, can you conclude that healthy-weight students eat significantly fewer fatty, sugary snacks than the overall population? Use a one-tailed test with ?α. = .05

 

For the sample of healthy-weight students, the standard error is ??σM =                             [ Select ]                          ["0.12", "0.53", "0.36", "0.14"]            ,

and z =                             [ Select ]                          ["-1.75", "-8.75", "-0.35", "-2.85"]            ,

which is                             [ Select ]                          ["smaller", "larger", "equal to"]           

than the critical value of                             [ Select ]                          ["-1.64", "-1.96", "-2.33", "-2.58"]            . 

This sample of healthy-weight students                             [ Select ]                          ["consumed", "did not consume"]            significantly fewer fatty, sugary snacks than the overall population average.

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Hypothesis Tests and Confidence Intervals for Means
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman