U8n-7 U8n-11 U8n-5 U8n-7 + U8n-9+ U8n-9-U8n-11
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
solving the determine red in the same way of the determine green
![U8n-7 U8n-11
U8n-5
U8n-7 + U8n-9 +
U8n-9-U8n–11
Evaluate](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5d564931-7cab-47e3-baee-f646b4270efc%2F8271b1a2-2707-4719-80be-b2dd920932e9%2Fzfco6e_processed.jpeg&w=3840&q=75)
Transcribed Image Text:U8n-7 U8n-11
U8n-5
U8n-7 + U8n-9 +
U8n-9-U8n–11
Evaluate
![e2n cn
U8n-5 =
n-1(c – e)"(a – c)"'
f2n dn
br-1(d – f)"(b– d)n'
cn+1e2n
an-
|
U8n-4
U8n-3 =
а"(а — с)" (с — е)т"
dn+1 f2m
b* (b – d)"(d – f)rn'
e2n+1cn
U8n-2 =
U8n-1 =
а" (а — с)" (с — е)п'
f2n+1dn
br (b – d)"(d – f)rn'
cn+12n+1
U8n =
U8n+1
a" (c – e)"(a – c)"n+1'
dn+1 f2n+1
b* (d – f)"(b – d)n+1°
U8n+2 =
This work aims to investigate the equilibria, local stability, global attractivity
and the exact solutions of the following difference equations
Bun-1un-5
Yun-3 - bun-5
Un+1 = Qun–1+
n = 0,1, ...,
(1)
Bun-1un-5
Yun-3 + đun-5'
Un+1 = aun-1
n = 0,1, ...,
(2)
where the coefficients a, B, , and d are positive real numbers and the initial con-
ditions u; for all i = -5, –4, ..., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.
2. ON THE EQUATION Un+1 = QUn-1 +
Bun-1ün-5
yun-3-đun-5
This section is devoted to study the qualitative behaviors of Eq. (1). The
equilibrium point of Eq. (1) is given by
Un-1un-5
Un+1 = Un-1+
п 3D 0, 1, ...,
(10)
Un-3 - Un-5
d" f2n-2
n-1(b – d)n-1(d – f)n-1'
e2n-1cn-1
U8n-10 =
U8n-9 =
2²-1(a – c)n–1(c – e)z-1'
f2n-1dn-1
-'(6 – d)n–1(d – f)n-1'
c"e2n-1
U8n-8 =
bn-1
U8n-7
an-1(c - e)n-1(a – c)n'
dr f2n-1
ba-1 (d – f)"-1(b – d)"
U8n-6 =
U8n-7u8n-11
U8n-5 = u8n-7+
и8п-9 — и8n-11
c"e2n-1
c"e2n-2
che2n-1
n-1(c-e)n-I
c"e2n-2
(а-с)
an-
-1(a-c)n an-i
n-'(c – e)n-1(a – c)n
e2n-1cn-1
(a-c)n-1(c-e)n-T
e2n-2 n
ar-1
(c-e)n-I
c"e2n-1
-1(c - e)n-1(a – c)n
an-1(c- e)n-1(a – c)* (¿ – })
e2n-1cn+1
an-.
c"e2n-1
+
n-'(c - e)n-1(a – c)"
e2n cn
an-1(c – e)"(a – c)"
an.
an-1(c – e)"(a – c)n*](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5d564931-7cab-47e3-baee-f646b4270efc%2F8271b1a2-2707-4719-80be-b2dd920932e9%2F9gax3d_processed.png&w=3840&q=75)
Transcribed Image Text:e2n cn
U8n-5 =
n-1(c – e)"(a – c)"'
f2n dn
br-1(d – f)"(b– d)n'
cn+1e2n
an-
|
U8n-4
U8n-3 =
а"(а — с)" (с — е)т"
dn+1 f2m
b* (b – d)"(d – f)rn'
e2n+1cn
U8n-2 =
U8n-1 =
а" (а — с)" (с — е)п'
f2n+1dn
br (b – d)"(d – f)rn'
cn+12n+1
U8n =
U8n+1
a" (c – e)"(a – c)"n+1'
dn+1 f2n+1
b* (d – f)"(b – d)n+1°
U8n+2 =
This work aims to investigate the equilibria, local stability, global attractivity
and the exact solutions of the following difference equations
Bun-1un-5
Yun-3 - bun-5
Un+1 = Qun–1+
n = 0,1, ...,
(1)
Bun-1un-5
Yun-3 + đun-5'
Un+1 = aun-1
n = 0,1, ...,
(2)
where the coefficients a, B, , and d are positive real numbers and the initial con-
ditions u; for all i = -5, –4, ..., 0, are arbitrary non-zero real numbers. We also
present the numerical solutions via some 2D graphs.
2. ON THE EQUATION Un+1 = QUn-1 +
Bun-1ün-5
yun-3-đun-5
This section is devoted to study the qualitative behaviors of Eq. (1). The
equilibrium point of Eq. (1) is given by
Un-1un-5
Un+1 = Un-1+
п 3D 0, 1, ...,
(10)
Un-3 - Un-5
d" f2n-2
n-1(b – d)n-1(d – f)n-1'
e2n-1cn-1
U8n-10 =
U8n-9 =
2²-1(a – c)n–1(c – e)z-1'
f2n-1dn-1
-'(6 – d)n–1(d – f)n-1'
c"e2n-1
U8n-8 =
bn-1
U8n-7
an-1(c - e)n-1(a – c)n'
dr f2n-1
ba-1 (d – f)"-1(b – d)"
U8n-6 =
U8n-7u8n-11
U8n-5 = u8n-7+
и8п-9 — и8n-11
c"e2n-1
c"e2n-2
che2n-1
n-1(c-e)n-I
c"e2n-2
(а-с)
an-
-1(a-c)n an-i
n-'(c – e)n-1(a – c)n
e2n-1cn-1
(a-c)n-1(c-e)n-T
e2n-2 n
ar-1
(c-e)n-I
c"e2n-1
-1(c - e)n-1(a – c)n
an-1(c- e)n-1(a – c)* (¿ – })
e2n-1cn+1
an-.
c"e2n-1
+
n-'(c - e)n-1(a – c)"
e2n cn
an-1(c – e)"(a – c)"
an.
an-1(c – e)"(a – c)n*
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)