У (8х — 9у)dx + 2x (х — Зу)dy %3D 0 а. 2x4у — Зху? — С b. 2x*y – 3x²y? = C c. 2x*y³ – 3xy² = C d. None of the above

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Please determine the Integrating Factor by Inspection 

*The steps in the solution must look like the other solution attached*

Thank you!

У (8х — 9у)dx + 2x (х — Зу)dy %3D 0
а. 2x4у — Зху? — С
b. 2x*y – 3x²y? = C
c. 2x*y³ – 3xy² = C
d. None of the above
Transcribed Image Text:У (8х — 9у)dx + 2x (х — Зу)dy %3D 0 а. 2x4у — Зху? — С b. 2x*y – 3x²y? = C c. 2x*y³ – 3xy² = C d. None of the above
Step i
The given differential equation is:
2(2y? + 5ху — 2у+ 4) dx + x(2х + 2у — 1) dy %3D 0
The above differential equation can be rewritten as,
(4у? + 10ху — 4у +8)dx + (2x? + 2ху — х)dy %3D 0
(4y dx + 2xydy) + (10xydx + 2x dy) – (4ydx + xdy) + (8dx) = 0
-
Step 2
Now if we multiply with x on both sides, then the differential equation is:
(4x³y²dx + 2x*ydy) – (4x*ydx + x*dy) + (8x*dx) + (10x“ydx + 2x° dy) = 0
Clearly,
4x³ y² dx + 2x*ydy = d(x*y²)
(4x³ ydx + x*dy) = d(x^y)
(8x*dx) = d (2x*)
(10x*ydx + 2x°dy) = d(2x°y)
Therefore,
|(4x'y²dx + 2x*ydy) – (4x³ydx +x*dy) + (8x*dx) + (10x*ydx + 2r°dy) = 0
|d(x*y²) – d(x*y) + d (2x+) + d(2x°y) = 0
-
Now integrating on both sides,
S d(x*y²) – S d(x*y) + S d (2x*) + [ d(2x°y) = / 0
x*y² – x*y+ 2x+ + 2x°y = C
x*y? + 2x*y+ 2x* – x*y = C
Transcribed Image Text:Step i The given differential equation is: 2(2y? + 5ху — 2у+ 4) dx + x(2х + 2у — 1) dy %3D 0 The above differential equation can be rewritten as, (4у? + 10ху — 4у +8)dx + (2x? + 2ху — х)dy %3D 0 (4y dx + 2xydy) + (10xydx + 2x dy) – (4ydx + xdy) + (8dx) = 0 - Step 2 Now if we multiply with x on both sides, then the differential equation is: (4x³y²dx + 2x*ydy) – (4x*ydx + x*dy) + (8x*dx) + (10x“ydx + 2x° dy) = 0 Clearly, 4x³ y² dx + 2x*ydy = d(x*y²) (4x³ ydx + x*dy) = d(x^y) (8x*dx) = d (2x*) (10x*ydx + 2x°dy) = d(2x°y) Therefore, |(4x'y²dx + 2x*ydy) – (4x³ydx +x*dy) + (8x*dx) + (10x*ydx + 2r°dy) = 0 |d(x*y²) – d(x*y) + d (2x+) + d(2x°y) = 0 - Now integrating on both sides, S d(x*y²) – S d(x*y) + S d (2x*) + [ d(2x°y) = / 0 x*y² – x*y+ 2x+ + 2x°y = C x*y? + 2x*y+ 2x* – x*y = C
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,