two spheres of mass m and a third sphere of mass M form an equilateral triangle, and a fourth sphere of mass m4 is at the center of the triangle. The net gravitational force on that central sphere from the three other spheres is zero. (a) What is M in terms of m? (b) If we double the value of m4, what then is the magnitude of the net gravitational force on the central sphere?
Gravitational force
In nature, every object is attracted by every other object. This phenomenon is called gravity. The force associated with gravity is called gravitational force. The gravitational force is the weakest force that exists in nature. The gravitational force is always attractive.
Acceleration Due to Gravity
In fundamental physics, gravity or gravitational force is the universal attractive force acting between all the matters that exist or exhibit. It is the weakest known force. Therefore no internal changes in an object occurs due to this force. On the other hand, it has control over the trajectories of bodies in the solar system and in the universe due to its vast scope and universal action. The free fall of objects on Earth and the motions of celestial bodies, according to Newton, are both determined by the same force. It was Newton who put forward that the moon is held by a strong attractive force exerted by the Earth which makes it revolve in a straight line. He was sure that this force is similar to the downward force which Earth exerts on all the objects on it.
two
spheres of mass m and a third sphere
of mass M form an equilateral triangle,
and a fourth sphere of mass m4 is
at the center of the triangle. The net
gravitational force on that central
sphere from the three other spheres is
zero. (a) What is M in terms of m? (b)
If we double the value of m4, what
then is the magnitude of the net gravitational
force on the central sphere?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images