Two solutions to y'' + 4y' - 21y = 0 are y₁=e³, 32 - e-7t a) Find the Wronskian. W- b) Find the solution satisfying the initial conditions y(0) 1, y'(0) - -47
Two solutions to y'' + 4y' - 21y = 0 are y₁=e³, 32 - e-7t a) Find the Wronskian. W- b) Find the solution satisfying the initial conditions y(0) 1, y'(0) - -47
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Two solutions to y''+ 4y' – 21y = 0 are y = e", y2 = e-74.
a) Find the Wronskian.
W =
b) Find the solution satisfying the initial conditions y(0) = 1, y'(0) = - 47
%3D
%3D
y =](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd20dfe5a-a4c1-4793-9f05-a80ad59a67d4%2F67a9455d-9e27-44b6-98f3-8283a4aa28bd%2Fl4sh2vn_processed.png&w=3840&q=75)
Transcribed Image Text:Two solutions to y''+ 4y' – 21y = 0 are y = e", y2 = e-74.
a) Find the Wronskian.
W =
b) Find the solution satisfying the initial conditions y(0) = 1, y'(0) = - 47
%3D
%3D
y =
![Two solutions to y'"+ 6y' + 25y = 0 are y1
-3* sin(4t), y2
3t
= e
* cos(4t).
= e
a) Find the Wronskian.
W = -9e-3t
b) Find the solution satisfying the initial conditions y(0) = - 3, y'(0)
11
*( = 3 cos z (t) – 5 sin (t)) x syntax error: you gave an equation, not an expression. syntax
e
error. Check your variables - you might be using an incorrect one.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd20dfe5a-a4c1-4793-9f05-a80ad59a67d4%2F67a9455d-9e27-44b6-98f3-8283a4aa28bd%2Fuxeqn44_processed.png&w=3840&q=75)
Transcribed Image Text:Two solutions to y'"+ 6y' + 25y = 0 are y1
-3* sin(4t), y2
3t
= e
* cos(4t).
= e
a) Find the Wronskian.
W = -9e-3t
b) Find the solution satisfying the initial conditions y(0) = - 3, y'(0)
11
*( = 3 cos z (t) – 5 sin (t)) x syntax error: you gave an equation, not an expression. syntax
e
error. Check your variables - you might be using an incorrect one.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
We know that the Wronskian of two functions and is calculated as:
(1)
Consider the given differential equation .
The two solution of this differential equations are and .
Trending now
This is a popular solution!
Step by step
Solved in 5 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)