Two people are riding inner tubes on an ice-covered (frictionless) lake. The first person has a mass of 65 kg and is travelling with a speed of 5.5 m/s. He collides head-on with the second person with a mass of 140 kg who is initially at rest. They bounce apart after the perfectly elastic collision. The final velocity of the first person is 2.1 m/s in the opposite direction to his initial direction. (a) Are momentum and kinetic energy conserved for this system? Explain your answer. (b) Determine the final velocity of the second person.
Two people are riding inner tubes on an ice-covered (frictionless) lake. The first person has a mass of 65 kg and is travelling with a speed of 5.5 m/s. He collides head-on with the second person with a mass of 140 kg who is initially at rest. They bounce apart after the perfectly elastic collision. The final velocity of the first person is 2.1 m/s in the opposite direction to his initial direction. (a) Are momentum and kinetic energy conserved for this system? Explain your answer. (b) Determine the final velocity of the second person.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Two people are riding inner tubes on an ice-covered (frictionless) lake. The first person has a mass of 65 kg and is travelling with a speed of 5.5 m/s. He collides head-on with the second person with a mass of 140 kg who is initially at rest. They bounce apart after the perfectly elastic collision. The final velocity of the first person is 2.1 m/s in the opposite direction to his initial direction.
(a) Are momentum and kinetic energy conserved for this system? Explain your answer.
(b) Determine the final velocity of the second person.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON