Two identical blocks of mass M = 2.60 kg each are initially at rest on a smooth, horizontal table. A bullet of very small mass m = 20 g (m << M) is fired at a high speed v. = 120 m/s towards the first block. It quickly exits the first block at a reduced speed of 0.40 v, then strikes the second block, quickly getting embedded inside of it. All the motion happens on the x-axis. (a) find the speeds of the two blocks after their encounters with the bullet. (b) Now the first block catches up with the second one and collides with it. They got stuck together afterward and move forward. Find their common speed V after the collision. (c) The two blocks now hit a light spring of spring constant k = 35 N/m mounted on the wall. How far is the spring compressed before the blocks reach a momentary stop?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question

Two identical blocks of mass M = 2.60 kg each are initially at rest on a smooth, horizontal table. A bullet of very small mass m = 20 g (m << M) is fired at a high speed v. = 120 m/s towards the first block. It quickly exits the first block at a reduced speed of 0.40 v, then strikes the second block, quickly getting embedded inside of it. All the motion happens on the x-axis.

(a) find the speeds of the two blocks after their encounters with the bullet. (b) Now the first block catches up with the second one and collides with it. They got stuck together afterward and move forward. Find their common speed V after the collision.

(c) The two blocks now hit a light spring of spring constant k = 35 N/m mounted on the wall. How far is the spring compressed before the blocks reach a momentary stop?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON